U. S. Army Research Laboratory
Assume the communication between a source and a destination is supported by a large reflecting surface (LRS), which consists of an array of reflector elements with adjustable reflection phases. By knowing the phase shifts induced by the composite propagation channels through the LRS, the phases of the reflectors can be configured such that the signals combine coherently at the destination, which improves the communication performance. However, perfect phase estimation or high-precision configuration of the reflection phases is unfeasible. In this paper, we study the transmission through an LRS with phase errors that have a generic distribution. We show that the LRS-based composite channel is equivalent to a point-to-point Nakagami fading channel. This equivalent representation allows for theoretical analysis of the performance and can help the system designer study the interplay between performance, the distribution of phase errors, and the number of reflectors. Numerical evaluation of the error probability for a limited number of reflectors confirms the theoretical prediction and shows that the performance is remarkably robust against the phase errors.
We develop an Fe-C-H interatomic potential based on the modified embedded-atom method (MEAM) formalism based on density functional theory to enable large-scale modular dynamics simulations of carbon steel and hydrogen.
The relativity of Global Positioning System (GPS) pseudorange measurements is explored within the geometrical optics approximation in the curved space-time near Earth. A space-time grid for navigation is created by the discontinuities introduced in the electromagnetic field amplitude by the P-code broadcast by the GPS satellites. We compute the world function of space-time near Earth, and we use it to define a scalar phase function that describes the space-time grid. We use this scalar phase function to define the measured pseudorange, which turns out to be a two-point space-time scalar under generalized coordinate transformations. Though the measured pseudorange is an invariant, it depends on the world lines of the receiver and satellite. While two colocated receivers measure two different pseudoranges to the same satellite, they obtain correct position and time, independent of their velocity. We relate the measured pseudorange to the geometry of space-time and find corrections to the conventional model of pseudorange that are on the order of the gravitational radius of the Earth.
Our overall program objective is to provide more natural ways for soldiers to interact and communicate with robots, much like how soldiers communicate with other soldiers today. We describe how the Wizard-of-Oz (WOz) method can be applied to multimodal human-robot dialogue in a collaborative exploration task. While the WOz method can help design robot behaviors, traditional approaches place the burden of decisions on a single wizard. In this work, we consider two wizards to stand in for robot navigation and dialogue management software components. The scenario used to elicit data is one in which a human-robot team is tasked with exploring an unknown environment: a human gives verbal instructions from a remote location and the robot follows them, clarifying possible misunderstandings as needed via dialogue. We found the division of labor between wizards to be workable, which holds promise for future software development.
We consider load controlled quasistatic evolution. Well posedness results for the nonlocal continuum model related to peridynamics are established. We show local existence and uniqueness of quasistatic evolution for load paths originating at stable critical points. These points can be associated with local energy minima among the convex set of deformations belonging to the strength domain of the material. The evolution of the displacements however is not constrained to lie inside the strength domain of the material. The load-controlled evolution is shown to exhibit energy balance.
There are no more papers matching your filters at the moment.