What if users could meet their future selves today? AI-generated future selves simulate meaningful encounters with a digital twin decades in the future. As AI systems advance, combining cloned voices, age-progressed facial rendering, and autobiographical narratives, a central question emerges: Does the modality of these future selves alter their psychological and affective impact? How might a text-based chatbot, a voice-only system, or a photorealistic avatar shape present-day decisions and our feeling of connection to the future? We report a randomized controlled study (N=92) evaluating three modalities of AI-generated future selves (text, voice, avatar) against a neutral control condition. We also report a systematic model evaluation between Claude 4 and three other Large Language Models (LLMs), assessing Claude 4 across psychological and interaction dimensions and establishing conversational AI quality as a critical determinant of intervention effectiveness. All personalized modalities strengthened Future Self-Continuity (FSC), emotional well-being, and motivation compared to control, with avatar producing the largest vividness gains, yet with no significant differences between formats. Interaction quality metrics, particularly persuasiveness, realism, and user engagement, emerged as robust predictors of psychological and affective outcomes, indicating that how compelling the interaction feels matters more than the form it takes. Content analysis found thematic patterns: text emphasized career planning, while voice and avatar facilitated personal reflection. Claude 4 outperformed ChatGPT 3.5, Llama 4, and Qwen 3 in enhancing psychological, affective, and FSC outcomes.