Umbo Computer Vision
Despite many advances in deep-learning based semantic segmentation, performance drop due to distribution mismatch is often encountered in the real world. Recently, a few domain adaptation and active learning approaches have been proposed to mitigate the performance drop. However, very little attention has been made toward leveraging information in videos which are naturally captured in most camera systems. In this work, we propose to leverage "motion prior" in videos for improving human segmentation in a weakly-supervised active learning setting. By extracting motion information using optical flow in videos, we can extract candidate foreground motion segments (referred to as motion prior) potentially corresponding to human segments. We propose to learn a memory-network-based policy model to select strong candidate segments (referred to as strong motion prior) through reinforcement learning. The selected segments have high precision and are directly used to finetune the model. In a newly collected surveillance camera dataset and a publicly available UrbanStreet dataset, our proposed method improves the performance of human segmentation across multiple scenes and modalities (i.e., RGB to Infrared (IR)). Last but not least, our method is empirically complementary to existing domain adaptation approaches such that additional performance gain is achieved by combining our weakly-supervised active learning approach with domain adaptation approaches.
2
Reflections in natural images commonly cause false positives in automated detection systems. These false positives can lead to significant impairment of accuracy in the tasks of detection, counting and segmentation. Here, inspired by the recent panoptic approach to segmentation, we show how fusing instance and semantic segmentation can automatically identify reflection false positives, without explicitly needing to have the reflective regions labelled. We explore in detail how state of the art two-stage detectors suffer a loss of broader contextual features, and hence are unable to learn to ignore these reflections. We then present an approach to fuse instance and semantic segmentations for this application, and subsequently show how this reduces false positive detections in a real world surveillance data with a large number of reflective surfaces. This demonstrates how panoptic segmentation and related work, despite being in its infancy, can already be useful in real world computer vision problems.
Person re-identification (re-ID) solves the task of matching images across cameras and is among the research topics in vision community. Since query images in real-world scenarios might suffer from resolution loss, how to solve the resolution mismatch problem during person re-ID becomes a practical problem. Instead of applying separate image super-resolution models, we propose a novel network architecture of Resolution Adaptation and re-Identification Network (RAIN) to solve cross-resolution person re-ID. Advancing the strategy of adversarial learning, we aim at extracting resolution-invariant representations for re-ID, while the proposed model is learned in an end-to-end training fashion. Our experiments confirm that the use of our model can recognize low-resolution query images, even if the resolution is not seen during training. Moreover, the extension of our model for semi-supervised re-ID further confirms the scalability of our proposed method for real-world scenarios and applications.
Person re-identification (re-ID) aims at matching images of the same identity across camera views. Due to varying distances between cameras and persons of interest, resolution mismatch can be expected, which would degrade person re-ID performance in real-world scenarios. To overcome this problem, we propose a novel generative adversarial network to address cross-resolution person re-ID, allowing query images with varying resolutions. By advancing adversarial learning techniques, our proposed model learns resolution-invariant image representations while being able to recover the missing details in low-resolution input images. The resulting features can be jointly applied for improving person re-ID performance due to preserving resolution invariance and recovering re-ID oriented discriminative details. Our experiments on five benchmark datasets confirm the effectiveness of our approach and its superiority over the state-of-the-art methods, especially when the input resolutions are unseen during training.
There are no more papers matching your filters at the moment.