Wentworth Institute of Higher Education
This paper presents a Unified Security Architecture that fortifies the Agentic Web through a Zero-Trust IAM framework. This architecture is built on a foundation of rich, verifiable agent identities using Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), with discovery managed by a protocol-agnostic Agent Name Service (ANS). Security is operationalized through a multi-layered Trust Fabric which introduces significant innovations, including Trust-Adaptive Runtime Environments (TARE), Causal Chain Auditing, and Dynamic Identity with Behavioral Attestation. By explicitly linking the LPCI threat to these enhanced architectural countermeasures within a formal security model, we propose a comprehensive and forward-looking blueprint for a secure, resilient, and trustworthy agentic ecosystem. Our formal analysis demonstrates that the proposed architecture provides provable security guarantees against LPCI attacks with bounded probability of success.
The rapid advancement and widespread adoption of generative artificial intelligence (AI) pose significant threats to the integrity of personal identity, including digital cloning, sophisticated impersonation, and the unauthorized monetization of identity-related data. Mitigating these risks necessitates the development of robust AI-generated content detection systems, enhanced legal frameworks, and ethical guidelines. This paper introduces the Digital Identity Rights Framework (DIRF), a structured security and governance model designed to protect behavioral, biometric, and personality-based digital likeness attributes to address this critical need. Structured across nine domains and 63 controls, DIRF integrates legal, technical, and hybrid enforcement mechanisms to secure digital identity consent, traceability, and monetization. We present the architectural foundations, enforcement strategies, and key use cases supporting the need for a unified framework. This work aims to inform platform builders, legal entities, and regulators about the essential controls needed to enforce identity rights in AI-driven systems.
There are no more papers matching your filters at the moment.