Zhuhai 4Dage Network Technology
Image deraining is an essential vision technique that removes rain streaks and water droplets, enhancing clarity for critical vision tasks like autonomous driving. However, current single-scale models struggle with fine-grained recovery and global consistency. To address this challenge, we propose Progressive Rain removal with Integrated State-space Modeling (PRISM), a progressive three-stage framework: Coarse Extraction Network (CENet), Frequency Fusion Network (SFNet), and Refine Network (RNet). Specifically, CENet and SFNet utilize a novel Hybrid Attention UNet (HA-UNet) for multi-scale feature aggregation by combining channel attention with windowed spatial transformers. Moreover, we propose Hybrid Domain Mamba (HDMamba) for SFNet to jointly model spatial semantics and wavelet domain characteristics. Finally, RNet recovers the fine-grained structures via an original-resolution subnetwork. Our model learns high-frequency rain characteristics while preserving structural details and maintaining global context, leading to improved image quality. Our method achieves competitive results on multiple datasets against recent deraining methods.
Monocular depth estimation is the base task in computer vision. It has a tremendous development in the decade with the development of deep learning. But the boundary blur of the depth map is still a serious problem. Research finds the boundary blur problem is mainly caused by two factors, first, the low-level features containing boundary and structure information may loss in deeper networks during the convolution process., second, the model ignores the errors introduced by the boundary area due to the few portions of the boundary in the whole areas during the backpropagation. In order to mitigate the boundary blur problem, we focus on the above two impact factors. Firstly, we design a scene understanding module to learn the global information with low- and high-level features, and then to transform the global information to different scales with our proposed scale transform module according to the different phases in the decoder. Secondly, we propose a boundary-aware depth loss function to pay attention to the effects of the boundary's depth value. The extensive experiments show that our method can predict the depth maps with clearer boundaries, and the performance of the depth accuracy base on NYU-depth v2 and SUN RGB-D is competitive.
There are no more papers matching your filters at the moment.