British Telecommunications
Customer churn prediction is a valuable task in many industries. In telecommunications it presents great challenges, given the high dimensionality of the data, and how difficult it is to identify underlying frustration signatures, which may represent an important driver regarding future churn behaviour. Here, we propose a novel Bayesian hierarchical joint model that is able to characterise customer profiles based on how many events take place within different television watching journeys, and how long it takes between events. The model drastically reduces the dimensionality of the data from thousands of observations per customer to 11 customer-level parameter estimates and random effects. We test our methodology using data from 40 BT customers (20 active and 20 who eventually cancelled their subscription) whose TV watching behaviours were recorded from October to December 2019, totalling approximately half a million observations. Employing different machine learning techniques using the parameter estimates and random effects from the Bayesian hierarchical model as features yielded up to 92\% accuracy predicting churn, associated with 100\% true positive rates and false positive rates as low as 14\% on a validation set. Our proposed methodology represents an efficient way of reducing the dimensionality of the data, while at the same time maintaining high descriptive and predictive capabilities. We provide code to implement the Bayesian model at this https URL.
2
An increasing amount of information is generated from the rapidly increasing number of sensor networks and smart devices. A wide variety of sources generate and publish information in different formats, thus highlighting interoperability as one of the key prerequisites for the success of Internet of Things (IoT). The BT Hypercat Data Hub provides a focal point for the sharing and consumption of available datasets from a wide range of sources. In this work, we propose a semantic enrichment of the BT Hypercat Data Hub, using well-accepted Semantic Web standards and tools. We propose an ontology that captures the semantics of the imported data and present the BT SPARQL Endpoint by means of a mapping between SPARQL and SQL queries. Furthermore, federated SPARQL queries allow queries over multiple hub-based and external data sources. Finally, we provide two use cases in order to illustrate the advantages afforded by our semantic approach.
Bluetooth Low Energy (BLE) is a short-range data transmission technology that is used for multimedia file sharing, home automation, and internet-of-things application. In this work, we perform packet error rate (PER) measurement and RF testing of BLE receiver in the harsh electromagnetic environment and in presence of RF interference. We check the PER performance in the line-of-sight (LOS) and non-line-of-sight (NLOS) scenario in absence of any interfering signal and in presence of wideband WLAN interference. The BLE PER measurements are conducted in a large reverberation chamber which is a rich scattering environment. Software-defined-radio has been used to create BLE communication link for PER measurement in LOS and NLOS configuration. The BLE PER is measured both in the presence and in absence of WLAN interference. Our measurement results show a higher PER for uncoded BLE PHY modes in NLOS channel condition and in presence of wideband interference. Whereas coded BLE PHY modes i.e. LE500K and LE125K are robust to interference with lower PER measurements.
Explainable AI (XAI) can greatly enhance user trust and satisfaction in AI-assisted decision-making processes. Recent findings suggest that a single explainer may not meet the diverse needs of multiple users in an AI system; indeed, even individual users may require multiple explanations. This highlights the necessity for a "multi-shot" approach, employing a combination of explainers to form what we introduce as an "explanation strategy". Tailored to a specific user or a user group, an "explanation experience" describes interactions with personalised strategies designed to enhance their AI decision-making processes. The iSee platform is designed for the intelligent sharing and reuse of explanation experiences, using Case-based Reasoning to advance best practices in XAI. The platform provides tools that enable AI system designers, i.e. design users, to design and iteratively revise the most suitable explanation strategy for their AI system to satisfy end-user needs. All knowledge generated within the iSee platform is formalised by the iSee ontology for interoperability. We use a summative mixed methods study protocol to evaluate the usability and utility of the iSee platform with six design users across varying levels of AI and XAI expertise. Our findings confirm that the iSee platform effectively generalises across applications and its potential to promote the adoption of XAI best practices.
TV customers today face many choices from many live channels and on-demand services. Providing a personalised experience that saves customers time when discovering content is essential for TV providers. However, a reliable understanding of their behaviour and preferences is key. When creating personalised recommendations for TV, the biggest challenge is understanding viewing behaviour within households when multiple people are watching. The objective is to detect and combine individual profiles to make better-personalised recommendations for group viewing. Our challenge is that we have little explicit information about who is watching the devices at any time (individuals or groups). Also, we do not have a way to combine more than one individual profile to make better recommendations for group viewing. We propose a novel framework using a Gaussian mixture model averaging to obtain point estimates for the number of household TV profiles and a Bayesian random walk model to introduce uncertainty. We applied our approach using data from real customers whose TV-watching data totalled approximately half a million observations. Our results indicate that combining our framework with the selected features provides a means to estimate the number of household TV profiles and their characteristics, including shifts over time and quantification of uncertainty.
There are no more papers matching your filters at the moment.