COWAROBOT Co. Ltd.
RemoteReasoner: Towards Unifying Geospatial Reasoning Workflow
Remote sensing imagery presents vast, inherently unstructured spatial data, necessitating sophisticated reasoning to interpret complex user intents and contextual relationships beyond simple recognition tasks. In this paper, we aim to construct an Earth observation workflow to handle complex queries by reasoning about spatial context and user intent. As a reasoning workflow, it should autonomously explore and construct its own inference paths, rather than being confined to predefined ground-truth sequences. Ideally, its architecture ought to be unified yet generalized, possessing capabilities to perform diverse reasoning tasks through one model without requiring additional fine-tuning. Existing remote sensing approaches rely on supervised fine-tuning paradigms and task-specific heads, limiting both autonomous reasoning and unified generalization. To this end, we propose RemoteReasoner, a unified workflow for geospatial reasoning. The design of RemoteReasoner integrates a multi-modal large language model (MLLM) for interpreting user instructions and localizing targets, together with task transformation strategies that enable multi-granularity tasks, including object-, region-, and pixel-level. In contrast to existing methods, our framework is trained with reinforcement learning (RL) to endow the MLLM sufficient reasoning autonomy. At the inference stage, our transformation strategies enable diverse task output formats without requiring task-specific decoders or further fine-tuning. Experiments demonstrated that RemoteReasoner achieves state-of-the-art (SOTA) performance across multi-granularity reasoning tasks. Furthermore, it retains the MLLM's inherent generalization capability, demonstrating robust performance on unseen tasks and out-of-distribution categories.
View blog
Resources7
Rethinking Temporal Fusion with a Unified Gradient Descent View for 3D Semantic Occupancy Prediction

GDFusion unifies diverse temporal cues for vision-based 3D semantic occupancy prediction by reinterpreting recurrent neural networks as a gradient descent process, achieving 1.4%-4.8% mIoU improvements and reducing memory consumption by 27%-72% on nuScenes benchmarks.

View blog
Resources3
H2RBox-v2: Incorporating Symmetry for Boosting Horizontal Box Supervised Oriented Object Detection
With the rapidly increasing demand for oriented object detection, e.g. in autonomous driving and remote sensing, the recently proposed paradigm involving weakly-supervised detector H2RBox for learning rotated box (RBox) from the more readily-available horizontal box (HBox) has shown promise. This paper presents H2RBox-v2, to further bridge the gap between HBox-supervised and RBox-supervised oriented object detection. Specifically, we propose to leverage the reflection symmetry via flip and rotate consistencies, using a weakly-supervised network branch similar to H2RBox, together with a novel self-supervised branch that learns orientations from the symmetry inherent in visual objects. The detector is further stabilized and enhanced by practical techniques to cope with peripheral issues e.g. angular periodicity. To our best knowledge, H2RBox-v2 is the first symmetry-aware self-supervised paradigm for oriented object detection. In particular, our method shows less susceptibility to low-quality annotation and insufficient training data compared to H2RBox. Specifically, H2RBox-v2 achieves very close performance to a rotation annotation trained counterpart -- Rotated FCOS: 1) DOTA-v1.0/1.5/2.0: 72.31%/64.76%/50.33% vs. 72.44%/64.53%/51.77%; 2) HRSC: 89.66% vs. 88.99%; 3) FAIR1M: 42.27% vs. 41.25%.
View blog
Resources
Int2Planner: An Intention-based Multi-modal Motion Planner for Integrated Prediction and Planning

The paper introduces Int2Planner, an intention-based, Transformer-based model that integrates multi-modal trajectory prediction and motion planning for autonomous driving. It achieved competitive performance on the nuPlan benchmark and a private dataset, demonstrating robust real-world deployment in urban environments by generating safe and reasonable trajectories.

View blog
Resources
There are no more papers matching your filters at the moment.