Hishab Singapore Pte. Ltd
In this paper, we present TituLLMs, the first large pretrained Bangla LLMs, available in 1b and 3b parameter sizes. Due to computational constraints during both training and inference, we focused on smaller models. To train TituLLMs, we collected a pretraining dataset of approximately ~37 billion tokens. We extended the Llama-3.2 tokenizer to incorporate language- and culture-specific knowledge, which also enables faster training and inference. There was a lack of benchmarking datasets to benchmark LLMs for Bangla. To address this gap, we developed five benchmarking datasets. We benchmarked various LLMs, including TituLLMs, and demonstrated that TituLLMs outperforms its initial multilingual versions. However, this is not always the case, highlighting the complexities of language adaptation. Our work lays the groundwork for adapting existing multilingual open models to other low-resource languages. To facilitate broader adoption and further research, we have made the TituLLMs models and benchmarking datasets publicly available (this https URL).
This paper introduces BnTTS (Bangla Text-To-Speech), the first framework for Bangla speaker adaptation-based TTS, designed to bridge the gap in Bangla speech synthesis using minimal training data. Building upon the XTTS architecture, our approach integrates Bangla into a multilingual TTS pipeline, with modifications to account for the phonetic and linguistic characteristics of the language. We pre-train BnTTS on 3.85k hours of Bangla speech dataset with corresponding text labels and evaluate performance in both zero-shot and few-shot settings on our proposed test dataset. Empirical evaluations in few-shot settings show that BnTTS significantly improves the naturalness, intelligibility, and speaker fidelity of synthesized Bangla speech. Compared to state-of-the-art Bangla TTS systems, BnTTS exhibits superior performance in Subjective Mean Opinion Score (SMOS), Naturalness, and Clarity metrics.
1
Misinformation spreading in mainstream and social media has been misleading users in different ways. Manual detection and verification efforts by journalists and fact-checkers can no longer cope with the great scale and quick spread of misleading information. This motivated research and industry efforts to develop systems for analyzing and verifying news spreading online. The SemEval-2023 Task 3 is an attempt to address several subtasks under this overarching problem, targeting writing techniques used in news articles to affect readers' opinions. The task addressed three subtasks with six languages, in addition to three ``surprise'' test languages, resulting in 27 different test setups. This paper describes our participating system to this task. Our team is one of the 6 teams that successfully submitted runs for all setups. The official results show that our system is ranked among the top 3 systems for 10 out of the 27 setups.
There are no more papers matching your filters at the moment.