Instituto Polit ́ecnico Nacional (IPN)
Topic modeling is a powerful technique to discover hidden topics and patterns within a collection of documents without prior knowledge. Traditional topic modeling and clustering-based techniques encounter challenges in capturing contextual semantic information. This study introduces an innovative end-to-end semantic-driven topic modeling technique for the topic extraction process, utilizing advanced word and document embeddings combined with a powerful clustering algorithm. This semantic-driven approach represents a significant advancement in topic modeling methodologies. It leverages contextual semantic information to extract coherent and meaningful topics. Specifically, our model generates document embeddings using pre-trained transformer-based language models, reduces the dimensions of the embeddings, clusters the embeddings based on semantic similarity, and generates coherent topics for each cluster. Compared to ChatGPT and traditional topic modeling algorithms, our model provides more coherent and meaningful topics.
The black-box nature of large language models (LLMs) necessitates the development of eXplainable AI (XAI) techniques for transparency and trustworthiness. However, evaluating these techniques remains a challenge. This study presents a general evaluation framework using four key metrics: Human-reasoning Agreement (HA), Robustness, Consistency, and Contrastivity. We assess the effectiveness of six explainability techniques from five different XAI categories model simplification (LIME), perturbation-based methods (SHAP), gradient-based approaches (InputXGradient, Grad-CAM), Layer-wise Relevance Propagation (LRP), and attention mechanisms-based explainability methods (Attention Mechanism Visualization, AMV) across five encoder-based language models: TinyBERT, BERTbase, BERTlarge, XLM-R large, and DeBERTa-xlarge, using the IMDB Movie Reviews and Tweet Sentiment Extraction (TSE) datasets. Our findings show that the model simplification-based XAI method (LIME) consistently outperforms across multiple metrics and models, significantly excelling in HA with a score of 0.9685 on DeBERTa-xlarge, robustness, and consistency as the complexity of large language models increases. AMV demonstrates the best Robustness, with scores as low as 0.0020. It also excels in Consistency, achieving near-perfect scores of 0.9999 across all models. Regarding Contrastivity, LRP performs the best, particularly on more complex models, with scores up to 0.9371.
Neural rendering has emerged as a powerful paradigm for synthesizing images, offering many benefits over classical rendering by using neural networks to reconstruct surfaces, represent shapes, and synthesize novel views, either for objects or scenes. In this neural rendering, the environment is encoded into a neural network. We believe that these new representations can be used to codify the scene for a mobile robot. Therefore, in this work, we perform a comparison between a trending neural rendering, called tiny-NeRF, and other volume representations that are commonly used as maps in robotics, such as voxel maps, point clouds, and triangular meshes. The target is to know the advantages and disadvantages of neural representations in the robotics context. The comparison is made in terms of spatial complexity and processing time to obtain a model. Experiments show that tiny-NeRF requires three times less memory space compared to other representations. In terms of processing time, tiny-NeRF takes about six times more to compute the model.
Infinitary Combinatorics shows interesting contrasts, with many similarities but also several important differences with its finite analog. The purpose of this paper is to present some concrete examples, both of similarities and of radical differences, in order to provide some intuition about the behaviour of infinity in the combinatorial setting. Our examples are taken from the branch of mathematics known as Graph Theory. -- La combinatoria infinita (temática que, a ra\'ız del trabajo de Cantor, actualmente es posible estudiar de manera completamente formal) nos presenta un interesante contraste de semejanzas y diferencias con su análogo finito. El propósito de este art\'ıculo es presentar algunos ejemplos concretos tanto de semejanzas, como de diferencias radicales, para proporcionar cierta intuición acerca del comportamiento del infinito en el ámbito combinatorio. Nuestros ejemplos son tomados de la rama de las matemáticas conocida como Teor\'ıa de Gráficas.
One of the most important agricultural products in Mexico is the tomato (Solanum lycopersicum), which occupies the 4th place national most produced product . Therefore, it is necessary to improve its production, building automatic detection system that detect, classify an keep tacks of the fruits is one way to archieve it. So, in this paper, we address the design of a computer vision system to detect tomatoes at different ripening stages. To solve the problem, we use a neural network-based model for tomato classification and detection. Specifically, we use the YOLOv3-tiny model because it is one of the lightest current deep neural networks. To train it, we perform two grid searches testing several combinations of hyperparameters. Our experiments showed an f1-score of 90.0% in the localization and classification of ripening stages in a custom dataset.
There are no more papers matching your filters at the moment.