Jefferson Lab
We initiate a systematic study of fragmentation energy correlators (FECs), which generalize traditional fragmentation functions and encode non-perturbative information about transverse dynamics in parton fragmentation processes. We define boost-invariant, non-perturbative FECs and derive a corresponding collinear factorization formula. A spin decomposition of the FECs is carried out, analogous to that of transverse-momentum-dependent fragmentation functions. In this work we focus particularly on the Collins-type quark FEC, which is sensitive to chiral symmetry breaking and characterizes the azimuthal asymmetry in the fragmentation of a transversely polarized quark. We perform a next-to-leading-order calculation of the corresponding hard coefficient in semi-inclusive deep-inelastic scattering for the quark non-singlet component, thereby validating the consistency of our theoretical framework.
University of Illinois at Urbana-Champaign logoUniversity of Illinois at Urbana-ChampaignUniversity of Pittsburgh logoUniversity of PittsburghUniversity of California, Santa Barbara logoUniversity of California, Santa BarbaraSLAC National Accelerator LaboratoryHarvard University logoHarvard UniversityImperial College London logoImperial College LondonUniversity of OklahomaDESYUniversity of Manchester logoUniversity of ManchesterUniversity of ZurichUniversity of BernUC Berkeley logoUC BerkeleyUniversity of Oxford logoUniversity of OxfordNikhefIndiana UniversityPusan National UniversityScuola Normale SuperioreCornell University logoCornell UniversityUniversity of California, San Diego logoUniversity of California, San DiegoNorthwestern University logoNorthwestern UniversityUniversity of GranadaCERN logoCERNArgonne National Laboratory logoArgonne National LaboratoryFlorida State UniversitySeoul National University logoSeoul National UniversityHuazhong University of Science and Technology logoHuazhong University of Science and TechnologyUniversity of Wisconsin-Madison logoUniversity of Wisconsin-MadisonUniversity of PisaLawrence Berkeley National Laboratory logoLawrence Berkeley National LaboratoryPolitecnico di MilanoUniversity of LiverpoolUniversity of IowaDuke University logoDuke UniversityUniversity of GenevaUniversity of GlasgowUniversity of Warwick logoUniversity of WarwickIowa State UniversityKarlsruhe Institute of Technology logoKarlsruhe Institute of TechnologyUniversità di Milano-BicoccaTechnische Universität MünchenOld Dominion UniversityTexas Tech UniversityDurham University logoDurham UniversityNiels Bohr InstituteCzech Technical University in PragueUniversity of OregonUniversity of AlabamaSTFC Rutherford Appleton LaboratoryLawrence Livermore National LaboratoryUniversity of California, Santa Cruz logoUniversity of California, Santa CruzUniversity of SarajevoJefferson LabTOBB University of Economics and TechnologyUniversity of California RiversideUniversity of HuddersfieldCEA SaclayRadboud University NijmegenUniversitá degli Studi dell’InsubriaHumboldt University BerlinINFN Milano-BicoccaUniversità degli Studi di BresciaIIT GuwahatiDaresbury LaboratoryINFN - PadovaINFN MilanoUniversità degli Studi di BariCockcroft InstituteHelwan UniversityINFN-TorinoINFN PisaINFN-BolognaBrookhaven National Laboratory (BNL)INFN Laboratori Nazionali del SudINFN PaviaMax Planck Institute for Nuclear PhysicsINFN TriesteINFN Roma TreINFN GenovaFermi National Accelerator Laboratory (Fermilab)INFN BariINFN-FirenzeINFN FerraraPunjab Agricultural UniversityEuropean Spallation Source (ESS)Fusion for EnergyInternational Institute of Physics (IIP)INFN-Roma La SapienzaUniversit degli Studi di GenovaUniversit di FerraraUniversit degli Studi di PadovaUniversit di Roma La SapienzaRWTH Aachen UniversityUniversit di TorinoSapienza Universit di RomaUniversit degli Studi di FirenzeUniversit degli Studi di TorinoUniversit di PaviaUniversit Di BolognaUniversit degli Studi Roma Tre
This review, by the International Muon Collider Collaboration (IMCC), outlines the scientific case and technological feasibility of a multi-TeV muon collider, demonstrating its potential for unprecedented energy reach and precision measurements in particle physics. It presents a comprehensive conceptual design and R&D roadmap for a collider capable of reaching 10+ TeV center-of-mass energy.
We propose a new finite volume renormalization scheme. Our scheme is based on the Gradient Flow applied to both fermion and gauge fields and, much like the Schrödinger functional method, allows for a nonperturbative determination of the scale dependence of operators using a step-scaling approach. We give some preliminary results for the pseudo-scalar density in the quenched approximation.
We perform the first simultaneous global QCD analysis of pion and kaon parton distribution functions (PDFs), constrained by pion- and kaon-induced Drell-Yan (DY) and leading neutron electroproduction data, together with lattice QCD data on pion and kaon PDF moments. The analysis indicates a softer valence uˉ\bar u distribution in the KK^- than in the π\pi^-, and a significantly more peaked valence ss-quark density in KK^- compared with the uˉ\bar u. The effective exponent governing the high-xx behavior of the PDF is found to be larger for uˉ\bar u in the kaon, βuˉK ⁣=1.6(2)\beta_{\bar u}^{K^-}\!= 1.6(2), than in the pion, βuˉπ ⁣=1.16(4)\beta_{\bar u}^{\pi^-}\!= 1.16(4), in the range 0.7x0.950.7 \leq x \leq 0.95. From the gluon momentum fractions we find the pion's gluon content accounts for 1/3\approx 1/3 of the mass budget of the pion at μ=2 GeV\mu=2~{\rm GeV}, but only 1/4\approx 1/4 for the kaon.
This handbook provides a comprehensive review of transverse-momentum-dependent parton distribution functions and fragmentation functions, commonly referred to as transverse momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton and other hadrons with respect to both their longitudinal and transverse momenta. They provide unique insight into the internal momentum and spin structure of hadrons, and are a key ingredient in the description of many collider physics cross sections. Understanding TMDs requires a combination of theoretical techniques from quantum field theory, nonperturbative calculations using lattice QCD, and phenomenological analysis of experimental data. The handbook covers a wide range of topics, from theoretical foundations to experimental analyses, as well as recent developments and future directions. It is intended to provide an essential reference for researchers and graduate students interested in understanding the structure of hadrons and the dynamics of partons in high energy collisions.
Scientific discovery is being revolutionized by AI and autonomous systems, yet current autonomous laboratories remain isolated islands unable to collaborate across institutions. We present the Autonomous Interconnected Science Lab Ecosystem (AISLE), a grassroots network transforming fragmented capabilities into a unified system that shorten the path from ideation to innovation to impact and accelerates discovery from decades to months. AISLE addresses five critical dimensions: (1) cross-institutional equipment orchestration, (2) intelligent data management with FAIR compliance, (3) AI-agent driven orchestration grounded in scientific principles, (4) interoperable agent communication interfaces, and (5) AI/ML-integrated scientific education. By connecting autonomous agents across institutional boundaries, autonomous science can unlock research spaces inaccessible to traditional approaches while democratizing cutting-edge technologies. This paradigm shift toward collaborative autonomous science promises breakthroughs in sustainable energy, materials development, and public health.
Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the MCMC run. Our approach leads to a significant reduction in the number of likelihood evaluations required to obtain an accurate representation of the Bayesian posterior across several analytic functions, as well as for a physical example based on a global analysis of parton distribution functions. Our method is extensible to other MCMC techniques, and we briefly compare our method to similar approaches based on normalizing flows. A code implementation can be found at this https URL.
We construct operators for simulating the scattering of two hadrons with spin on the lattice. Three methods are shown to give the consistent operators for PN, PV, VN and NN scattering, where P, V and N denote pseudoscalar, vector and nucleon. Explicit expressions for operators are given for all irreducible representations at lowest two relative momenta. Each hadron has a good helicity in the first method. The hadrons are in a certain partial wave L with total spin S in the second method. These enable the physics interpretations of the operators obtained from the general projection method. The correct transformation properties of the operators in all three methods are proven. The total momentum of two hadrons is restricted to zero since parity is a good quantum number in this case.
We present an update to the QCD global analysis of single transverse-spin asymmetries presented in Cammarota, et al., PRD 102, 054002 (2020) (JAM3D-20). JAM3D-20 simultaneously included transverse momentum dependent and collinear twist-3 observables, both of which are sensitive to quark-gluon-quark correlations in hadrons. In this study we extract for the first time the twist-3 chiral odd fragmentation function H~\tilde{H} by incorporating the sinϕs\sin\phi_s modulation data from SIDIS along with its contribution to the single transverse-spin asymmetry in pion production from proton-proton collisions. We also explore the impact of lattice QCD tensor charge calculations and the Soffer bound on our global analysis. We find that both constraints can be accommodated within our results, with H~\tilde{H} playing a key role in maintaining agreement with the data from proton-proton collisions.
This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter
We perform a global QCD analysis of unpolarized parton distribution functions (PDFs) in the proton, including new WW+charm production data from pppp collisions at the LHC, which have been suggested for constraining the strange quark PDF. In particular, we assess the impact of the WW+charm data relative to that of semi-inclusive pion and kaon production data in lepton-nucleon deep-inelastic scattering. Compared with a baseline global fit that does not include these datasets, we find that semi-inclusive deep-inelastic scattering and WW+charm data combined favor a larger strange distribution, but smaller than the SU(3) symmetric sea suggested in some previous analyses. Combined, the ratio of strange to nonstrange sea quark distributions is $R_s = (s+\bar s)/(\bar u+\bar d) \approx \{ 0.69,\, 0.49,\, 0.29 \}for for x = \{ 0.01,\, 0.04,\, 0.1 \}$.
We propose to probe light-quark dipole interactions at lepton colliders using the azimuthal asymmetry of a collinear dihadron pair (h1h2)(h_1h_2) produced in association with another hadron hh'. This asymmetry, arising from quantum interference in the quark spin space, is exclusively sensitive to dipole interactions at the leading power of the new physics scale and simultaneously probes both the real and imaginary components of the dipole couplings. By combining all possible channels of hh', this method allows for disentangling the up and down quark dipole moments and has the potential to significantly strengthen current constraints by one to two orders of magnitude.
PDFs can be studied directly using lattice QCD by evaluating matrix elements of non-local operators. A number of groups are pursuing numerical calculations and investigating possible systematic uncertainties. One systematic that has received less attention is the effect of calculating in a finite spacetime volume. Here we present first attempts to assess the role of the finite volume for spatially non-local operators. We find that these matrix elements may suffer from large finite-volume artifacts and more careful investigation is needed.
This Report summarizes the proceedings of the 2019 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments for high precision Standard Model calculations, (II) the sensitivity of parton distribution functions to the experimental inputs, (III) new developments in jet substructure techniques and a detailed examination of gluon fragmentation at the LHC, (IV) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, and (V) Monte Carlo event generator studies relating to PDF evolution and comparisons of important processes at the LHC.
We explore the use of optimized operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. The dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.
We present the first simultaneous global QCD analysis of unpolarized transverse momentum dependent (TMD) and collinear parton distribution functions (PDFs) in the proton. Our study incorporates data from deep-inelastic scattering, Drell-Yan, inclusive weak boson, WW+\,charm, and jet production involving PDFs, as well as TMD Drell-Yan and ZZ-boson production data from fixed target and collider experiments sensitive to both TMD and collinear distributions. The analysis is performed at next-to-next-to-leading logarithmic accuracy for QCD resummation in TMD observables and next-to-leading order for observables described in collinear factorization. The combined analysis improves knowledge of both TMD and collinear PDFs, particularly in the sea-quark sector, providing a consistent simultaneous description of the aforementioned observables.
High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe Standard Model (SM) processes and search for physics beyond the Standard Model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
The factorization theorems of quantum chromodynamics (QCD) apply equally well to most simple quantum field theories that require renormalization but where direct calculations are much more straightforward. Working with these simpler theories is convenient for stress-testing the limits of the factorization program and for examining general properties of the parton density functions (pdfs) or other correlation functions that might be necessary for a factorized description of a process. With this view in mind, we review the steps of factorization in a real scalar Yukawa field theory for both deep inelastic scattering (DIS) and semi-inclusive deep inelastic scattering (SIDIS) cross sections. In the case of SIDIS, we illustrate how to separate the small transverse momentum region, where transverse momentum dependent (TMD) pdfs are needed, from a purely collinear large transverse momentum region, and we examine the influence of subleading power corrections. We also review the steps for formulating TMD factorization in transverse coordinate space, and we study the effect of transforming to the well-known bb_*-scheme. Within the Yukawa theory, we investigate the consequences of switching to a generalized parton model (GPM) approach, and compare with a fully factorized approach. Our results highlight the need to address similar or analogous issues in QCD.
The 2020 update of the European Strategy for Particle Physics emphasised the importance of an intensified and well-coordinated programme of accelerator R&D, supporting the design and delivery of future particle accelerators in a timely, affordable and sustainable way. This report sets out a roadmap for European accelerator R&D for the next five to ten years, covering five topical areas identified in the Strategy update. The R&D objectives include: improvement of the performance and cost-performance of magnet and radio-frequency acceleration systems; investigations of the potential of laser / plasma acceleration and energy-recovery linac techniques; and development of new concepts for muon beams and muon colliders. The goal of the roadmap is to document the collective view of the field on the next steps for the R&D programme, and to provide the evidence base to support subsequent decisions on prioritisation, resourcing and implementation.
We establish robust relations between Transverse Momentum Dependent distributions (TMDs) and collinear distributions. We define weighted integrals of TMDs that we call Transverse Momentum Moments (TMMs) and prove that TMMs are equal to collinear distributions evaluated in some minimal subtraction scheme. The conversion to the modified minimal subtraction (MSˉ\bar{MS}) scheme, can be done by a calculable factor, which we derive up to three loops for some cases. We discuss in detail the zeroth, the first, and the second TMMs and provide phenomenological results for them based on the current extractions of TMDs. The results of this paper open new avenues for theoretical and phenomenological investigation of the three-dimensional and collinear hadron structures.
There are no more papers matching your filters at the moment.