NTT Basic Research Laboratories
Variational counterdiabatic (CD) driving is a disciplined and widely used method to robustly control quantum many-body systems by mimicking adiabatic processes with high fidelity and reduced duration. Central to this technique is a universal structure of the adiabatic gauge potential (AGP) over a parameterized Hamiltonian. Here, we reveal that introducing a new degree of freedom into the theory of the AGP can significantly improve variational CD driving. Specifically, we find that the algebraic characterization of the AGP is not unique, and we exploit this non-uniqueness to develop the weighted variational method for deriving a refined driving protocol. This approach extends the conventional method in two aspects: it assigns customized weights to matrix elements relevant to specific problems, and it effectively incorporates nonlocal information. We also develop an efficient numerical algorithm to compute the refined driving protocol using computer algebra. Our framework is broadly applicable, as it can replace almost all previous uses of variational CD driving. We demonstrate its practicality by applying it to adiabatic evolution along the ground state of a parameterized Hamiltonian. This proposal outperforms the conventional method in terms of fidelity, as confirmed by extensive numerical simulations on quantum Ising models.
Quantum key distribution (QKD) protocols with threshold detectors are driving high-performance QKD demonstrations. The corresponding security proofs usually assume that all physical detectors have the same detection efficiency. However, the efficiencies of the detectors used in practice might show a mismatch depending on the manufacturing and setup of these detectors. A mismatch can also be induced as the different spatial-temporal modes of an incoming signal might couple differently to a detector. Here we develop a method that allows to provide security proofs without the usual assumption. Our method can take the detection-efficiency mismatch into account without having to restrict the attack strategy of the adversary. Especially, we do not rely on any photon-number cut-off of incoming signals such that our security proof is directly applicable to practical situations. We illustrate our method for a receiver that is designed for polarization encoding and is sensitive to a number of spatial-temporal modes. In our detector model, the absence of quantum interference between any pair of spatial-temporal modes is assumed. For a QKD protocol with this detector model, we can perform a security proof with characterized efficiency mismatch and without photon-number cut-off assumption. Our method also shows that in the absence of efficiency mismatch in our detector model, the key rate increases if the loss due to detection inefficiency is assumed to be outside of the adversary's control, as compared to the view where for a security proof this loss is attributed to the action of the adversary.
Local counterdiabatic driving is a method of improving the performance of adiabatic control and digital implementation of quantum annealing with local counterdiabatic driving has been discussed. In this paper, we propose a decomposition formula which enables us to reduce digitization errors and the number of gate operations in digitized quantum annealing with local counterdiabatic driving.
Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach---measurement-device-independent quantum key distribution---has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time-frame of signal transmission.
We demonstrate that an effective near-zero refractive index can emerge from collective light scattering in a discrete atomic lattice, using essentially exact microscopic simulations. In a 25-layer array, cooperative response leads to over a thirtyfold increase in the effective optical wavelength within the medium, almost eliminating optical phase accumulation, with potential applications in spectroscopy and optical manipulation of quantum emitters. Crucially, the near-zero refractive index arises from first-principles microscopic theory, rather than being imposed through continuous phenomenological effective-medium model - providing conceptually important insight into the emergence of macroscopic electromagnetism from atomic-scale interactions.
Shot noise, originating from the discrete nature of electric charge, is generated by scattering processes. Shot-noise measurements have revealed microscopic charge dynamics in various quantum transport phenomena. In particular, beyond the single-particle picture, such measurements have proved to be powerful ways to investigate electron correlation in quantum liquids. Here, we review the recent progress of shot-noise measurements in mesoscopic physics. This review summarizes the basics of shot-noise theory based on the Landauer-B\"{u}ttiker formalism, measurement techniques used in previous studies, and several recent experiments demonstrating electron scattering processes. We then discuss three different kinds of quantum liquids, namely those formed by, respectively, the Kondo effect, the fractional quantum Hall effect, and superconductivity. Finally, we discuss current noise within the framework of nonequilibrium statistical physics and review related experiments. We hope that this review will convey the significance of shot-noise measurements to a broad range of researchers in condensed matter physics.
Mapping a quantum algorithm to any practical large-scale quantum computer will require a sequence of compilations and optimizations. At the level of fault-tolerant encoding, one likely requirement of this process is the translation into a topological circuit, for which braided circuits represent one candidate model. Given the large overhead associated with encoded circuits, it is paramount to reduce their size in terms of computation time and qubit number through circuit compression. While these optimizations have typically been performed in the language of three-dimensional diagrams, such a representation does not allow an efficient, general, and scalable approach to reduction or verification. We propose the use of the ZX-calculus as an intermediate language for braided circuit compression, demonstrating advantage by comparing results using this approach with those previously obtained for the compression of A- and Y-state distillation circuits. We then provide a benchmark of our method against a small set of Clifford+T circuits, yielding compression percentages of 77%. Our results suggest that the overheads of braided, defect-based circuits are comparable to those of their lattice-surgery counterparts, restoring the potential of this model for surface-code quantum computation.
Non-orthogonal multiple access (NOMA) technique is important for achieving a high data rate in next-generation wireless communications. A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation (RA), e.g., channel and power. However, this RA optimization problem is NP-hard, and obtaining a good approximation of a solution with a low computational complexity algorithm is not easy. To overcome this problem, we propose the coherent Ising machine (CIM) based optimization method for channel allocation in NOMA systems. The CIM is an Ising system that can deliver fair approximate solutions to combinatorial optimization problems at high speed (millisecond order) by operating optimization algorithms based on mutually connected photonic neural networks. The performance of our proposed method was evaluated using a simulation model of the CIM. We compared the performance of our proposed method to simulated annealing, a conventional-NOMA pairing scheme, deep Q learning based scheme, and an exhaustive search scheme. Simulation results indicate that our proposed method is superior in terms of speed and the attained optimal solutions.
Nitrogen-vacancy (NV) centers in diamond are considered sensors for detecting magnetic fields. Pulsed optically detected magnetic resonance (ODMR) is typically used to detect AC magnetic fields; however, this technique can only be implemented after careful calibration that involves aligning an external static magnetic field, measuring continuous-wave (CW) ODMR, determining the Rabi frequency, and setting the microwave phase. In contrast, CW-ODMR can be simply implemented by continuous application of green CW laser and a microwave filed. In this letter, we report a method that uses NV centers and CW-ODMR to detect AC magnetic fields. Unlike conventional methods that use NV centers to detect AC magnetic fields, the proposed method requires neither a pulse sequence nor an externally applied DC magnetic field; this greatly simplifies the procedure and apparatus needed to implement this method. This method provides a sensitivity of 2.5 {\mu}T/Hz1/2^{1/2} at room temperature. Thus, this simple alternative to existing AC magnetic field sensors paves the way for a practical and feasible quantum sensor.
Quantum separable operations are defined as those that cannot produce entanglement from separable states, and it is known that they strictly surpass local operations and classical communication (LOCC) in a number of tasks, which is sometimes referred to as "quantum nonlocality without entanglement." Here we consider a task with such a gap regarding the trade-off between state discrimination and preservation of entanglement. We show that this task along with the gap has an analogue in a purely classical setup, indicating that the quantum properties are not essential in the existence of a nonzero gap between the separable operations and LOCC.
Projective measurements are an essential element of quantum mechanics. In most cases, they cause an irreversible change of the quantum system on which they act. However, measurements can also be used to stabilize quantum states from decay processes, which is known as the quantum Zeno effect (QZE). Here, we demonstrate this effect for the case of a superposition state of a nuclear spin qubit, using an ancilla to perform the measurement. As a result, the quantum state of the qubit is protected against dephasing without relying on an ensemble nature of NMR experiments. We also propose a scheme to protect an arbitrary state by using QZE.
Previously a new scheme of quantum information processing based on spin coherent states of two component Bose-Einstein condensates was proposed (Byrnes {\it et al.} Phys. Rev. A 85, 40306(R)). In this paper we give a more detailed exposition of the scheme, expanding on several aspects that were not discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct a general framework for quantum algorithms to be executed using multiple spin coherent states, which are individually controlled. We illustrate the scheme by applications to quantum information protocols, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.
Slow noise processes, with characteristic timescales ~1s, have been studied in planar superconducting resonators. A frequency locked loop is employed to track deviations of the resonator centre frequency with high precision and bandwidth. Comparative measurements are made in varying microwave drive, temperature and between bare resonators and those with an additional dielectric layer. All resonators are found to exhibit flicker frequency noise which increases with decreasing microwave drive. We also show that an increase in temperature results in a saturation of flicker noise in resonators with an additional dielectric layer, while bare resonators stop exhibiting flicker noise instead showing a random frequency walk process.
Single photons provide excellent quantum information carriers, but current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed single photons, while linear-optics gates are inherently probabilistic. Here, we introduce a deterministic scheme for photonic quantum information. Our single, versatile process---coherent photon conversion---provides a full suite of photonic quantum processing tools, from creating high-quality heralded single- and multiphoton states free of higher-order imperfections to implementing deterministic multiqubit entanglement gates and high-efficiency detection. It fulfils all requirements for a scalable photonic quantum computing architecture. Using photonic crystal fibres, we experimentally demonstrate a four-colour nonlinear process usable for coherent photon conversion and show that current technology provides a feasible path towards deterministic operation. Our scheme, based on interacting bosonic fields, is not restricted to optical systems, but could also be implemented in optomechanical, electromechanical and superconducting systems which exhibit extremely strong intrinsic nonlinearities.
The quantum extreme reservoir computation (QERC) is a versatile quantum neural network model that combines the concepts of extreme machine learning with quantum reservoir computation. Key to QERC is the generation of a complex quantum reservoir (feature space) that does not need to be optimized for different problem instances. Originally, a periodically-driven system Hamiltonian dynamics was employed as the quantum feature map. In this work we capture how the quantum feature map is generated as the number of time-steps of the dynamics increases by a method to characterize unitary matrices in the form of weighted networks. Furthermore, to identify the key properties of the feature map that has sufficiently grown, we evaluate it with various weighted network models that could be used for the quantum reservoir in image classification situations. At last, we show how a simple Hamiltonian model based on a disordered discrete time crystal with its simple implementation route provides nearly-optimal performance while removing the necessity of programming of the quantum processor gate by gate.
Today's quantum processors composed of fifty or more qubits have allowed us to enter a computational era where the output results are not easily simulatable on the world's biggest supercomputers. What we have not seen yet, however, is whether or not such quantum complexity can be ever useful for any practical applications. A fundamental question behind this lies in the non-trivial relation between the complexity and its computational power. If we find a clue for how and what quantum complexity could boost the computational power, we might be able to directly utilize the quantum complexity to design quantum computation even with the presence of noise and errors. In this work we introduce a new reservoir computational model for pattern recognition showing a quantum advantage utilizing scale-free networks. This new scheme allows us to utilize the complexity inherent in the scale-free networks, meaning we do not require programing nor optimization of the quantum layer even for other computational tasks. The simplicity in our approach illustrates the computational power in quantum complexity as well as provide new applications for such processors.
We develop a formalism of electric dipole spin resonance (EDSR) based on slanting magnetic field, where we especially investigate the microwave amplitude dependence. With increasing microwave amplitude, the Rabi frequency increases linearly for a spin confined in a harmonic potential. How- ever, when the spin is confined in the double-well potential, the Rabi frequency shows sub-linear dependence with increasing the microwave amplitude.
High-dimensional quantum entanglement is drawing attention because it enables us to perform quantum information tasks that are robust against noises. To test the nonlocality of entangled qudits, the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality has been proposed and demonstrated using qudits based on orbital angular momentum, time-energy uncertainty, and frequency bins. Here, we report the generation and observation of time-bin entangled ququarts. We implemented a measurement for the CGLMP inequality test using cascaded delay Mach-Zehnder interferometers fabricated by using planar lightwave circuit technology, with which we achieved a precise and stable measurement for time-bin-entangled ququarts. In addition, we generated an optimized entangled state by modulating the pump pulse intensities, with which we can observe the theoretical maximum violation for the CGLMP inequality test. As a result, we successfully observed a Bell-type parameter S4=2.774±0.025S_4 = 2.774 \pm 0.025 violating the CGLMP inequality for the maximally entangled state and an enhanced Bell-type parameter S4=2.913±0.023S_4 = 2.913 \pm 0.023 for the optimized entangled state.
Quantum key distribution (QKD) can be used to generate secret keys between two distant parties. Even though QKD has been proven unconditionally secure against eavesdroppers with unlimited computation power, practical implementations of QKD may contain loopholes that may lead to the generated secret keys being compromised. In this paper, we propose a phase-remapping attack targeting two practical bidirectional QKD systems (the "plug & play" system and the Sagnac system). We showed that if the users of the systems are unaware of our attack, the final key shared between them can be compromised in some situations. Specifically, we showed that, in the case of the Bennett-Brassard 1984 (BB84) protocol with ideal single-photon sources, when the quantum bit error rate (QBER) is between 14.6% and 20%, our attack renders the final key insecure, whereas the same range of QBER values has been proved secure if the two users are unaware of our attack; also, we demonstrated three situations with realistic devices where positive key rates are obtained without the consideration of Trojan horse attacks but in fact no key can be distilled. We remark that our attack is feasible with only current technology. Therefore, it is very important to be aware of our attack in order to ensure absolute security. In finding our attack, we minimize the QBER over individual measurements described by a general POVM, which has some similarity with the standard quantum state discrimination problem.
In the context of closed quantum systems, when a system prepared in its ground state undergoes a sudden quench, the resulting Loschmidt echo can exhibit zeros, resembling the Fisher zeros in the theory of classical equilibrium phase transitions. These zeros lead to nonanalytical behavior of the corresponding rate function, which is referred to as \textit{dynamical quantum phase transitions} (DQPTs). In this work, we investigate DQPTs in the context of open quantum systems that are coupled to both Markovian and non-Markovian dephasing baths via a conserved quantity. The general framework is corroborated by studying the non-equilibrium dynamics of a transverse-field Ising ring. We show the robustness of DQPT signatures under the action of both engineered dephasing baths, independently on how strongly they couple to the quantum system. Our theory provides insight on the effect of non-Markovian environments on DQPTs.
There are no more papers matching your filters at the moment.