Osaka-city University
We study certain Poisson structures related to quantized enveloping algebras. In particular, we give a description of the Poisson structure of a certain manifold associated to the ring of differential operators.
Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is the future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz. DECIGO aims at the detection of primordial gravitational waves, which could be produced during the inflationary period right after the birth of the universe. There are many other scientific objectives of DECIGO, including the direct measurement of the acceleration of the expansion of the universe, and reliable and accurate predictions of the timing and locations of neutron star/black hole binary coalescences. DECIGO consists of four clusters of observatories placed in the heliocentric orbit. Each cluster consists of three spacecraft, which form three Fabry-Perot Michelson interferometers with an arm length of 1,000 km. Three clusters of DECIGO will be placed far from each other, and the fourth cluster will be placed in the same position as one of the three clusters to obtain the correlation signals for the detection of the primordial gravitational waves. We plan to launch B-DECIGO, which is a scientific pathfinder of DECIGO, before DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to further expand the multi-messenger astronomy.
The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays with primary energies above 1.6 x 10^(18) eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 x 10^(18) eV and a steepening at 5.4 x 10^(19) eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of ultra-high energy cosmic ray surface detector data, that involves generating a complete simulation of ultra-high energy cosmic rays striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the "thinning" approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.
We investigate a radiative correction to the masses of Kaluza-Klein(KK) modes in a universal extra dimensional model which are defined on a six-dimensional spacetime with extra space as a two-sphere orbifold S2/Z2S^2/Z_2. We first define the Feynman rules which are necessary for the calculation. We then calculate the one-loop diagrams which contribute to the radiative corrections to the KK masses, and obtain one-loop corrections to masses for fermions, gauge bosons and scalar bosons. We estimate the one-loop corrections to KK masses for the first KK modes of standard model particles as a function of momentum cut-off scale, and we determine the lightest KK particle which would be a promising candidate of a dark matter.
We study charged lepton flavor violation (CLFV) associated with heavy quark pair production in lepton-nucleon deep-inelastic scattering $\ell_i N \to \ell_j q\bar{q} X.Here. Here \ell_iand and \ell_j$ denote the initial and final leptons; NN and XX are respectively the initial nucleon and arbitrary final hadronic system. We employ a model Lagrangian in which a scalar and pseudoscalar mediator generates the CLFV. We derive heavy quark structure functions for scalar and pseudoscalar currents and compute momentum distributions of the final lepton for the process. Our focus is on the heavy quark mass effects in the final lepton momentum distribution. We clarify the necessity of inclusion of the heavy quark mass to obtain reliable theory predictions for the CLFV signal searches in the deep-inelastic scattering.
Nanofluidics shows great promise for energy conversion and desalination applications. The performance of nanofluidic devices is controlled by liquid-solid friction, quantified by the Navier friction coefficient (FC). Despite decades of research, there is no well-established generic framework to determine the frequency dependent Navier FC from atomistic simulations. Here, we have derived analytical expressions to connect the Navier FC to the random force autocorrelation on the confining wall, from the observation that the random force autocorrelation can be related to the hydrodynamic boundary condition, where the Navier FC appears. The analytical framework is generic in the sense that it explicitly includes the system size dependence and also the frequency dependence of the FC, which enabled us to address (i) the long-standing plateau issue in the evaluation of the FC and (ii) the non-Markovian behavior of liquid-solid friction of a Lennard-Jones liquid and of water on various walls and at various temperatures, including the supercooled regime. This new framework opens the way to explore the frequency dependent FC for a wide range of complex liquids.
Consider jump-type stochastic differential equations with the drift, diffusion and jump terms. Logarithmic derivatives of densities for the solution process are studied, and the Bismut-Elworthy-Li type formulae can be obtained under the uniformly elliptic condition on the coefficients of the diffusion and jump terms. Our approach is based upon the Kolmogorov backward equation by making full use of the Markovian property of the process.
Tohoku University logoTohoku UniversityUniversity of MississippiUniversity of CincinnatiNational United UniversityKyungpook National UniversityHiroshima Institute of TechnologyINFN Sezione di NapoliCharles UniversityNational Central UniversityChinese Academy of Sciences logoChinese Academy of SciencesBudker Institute of Nuclear Physics SB RASGyeongsang National UniversityTel Aviv University logoTel Aviv UniversityKorea UniversityUniversity of Science and Technology of China logoUniversity of Science and Technology of ChinaChonnam National UniversityIndiana UniversitySungkyunkwan UniversityNational Taiwan UniversityUniversity of BonnPanjab UniversityNagoya University logoNagoya UniversityUniversity of TabukUniversity of MelbourneIndian Institute of Technology BhubaneswarUniversity of LjubljanaYonsei UniversityPeking University logoPeking UniversityUniversity of Florida logoUniversity of FloridaPacific Northwest National LaboratoryUniversity of Tokyo logoUniversity of TokyoUniversité Paris-Saclay logoUniversité Paris-SaclayTechnionShandong University logoShandong UniversityÉcole Polytechnique Fédérale de Lausanne (EPFL)University of Sydney logoUniversity of SydneyNovosibirsk State UniversityHanyang UniversityWayne State UniversityHigh Energy Accelerator Research Organization (KEK)Indian Institute of Technology MadrasKitasato UniversityKarlsruhe Institute of Technology logoKarlsruhe Institute of TechnologyUniversity of LouisvilleMoscow Institute of Physics and TechnologyUniversity of MariborUniversity of South CarolinaTokyo Metropolitan UniversitySOKENDAI (The Graduate University for Advanced Studies)University of Eastern FinlandJozef Stefan InstituteDongguk UniversityINFN, Sezione di TorinoNihon UniversityIndian Institute of Technology GuwahatiIndian Institute of Technology HyderabadUniversità di Napoli Federico IIInha UniversityUniversity of Hawai’iKanagawa UniversityMax-Planck-Institut für PhysikCNRS/IN2P3Yamagata UniversityInstitute of high-energy PhysicsLudwig-Maximilian-UniversityJustus Liebig University GiessenKumamoto UniversityKonkuk UniversityDeutsches Elektronen SynchrotronUniversity of ToyamaChristopher Newport UniversityMalaviya National Institute of Technology JaipurUniversity of MiyazakiUniversity of South AlabamaUniversity of Southern MississippiLiaoning Normal UniversityUniversity of California at Santa BarbaraToho UniversityUniversity of GiessenNara University of EducationNara Women’s UniversityP.N. Lebedev Physical Institute of the Russian Academy of SciencesH. Niewodniczanski Institute of Nuclear PhysicsKobayashi-Maskawa Institute for the Origin of Particles and the Universe,Kinki UniversityNihon Dental CollegeNippon Dental UniversityNational Institute of Science Education and Research, HBNIJ-PARCNational Museum of Nature and ScienceKawasaki Medical SchoolOsaka-city UniversityIndian Institute of Science Education and Research −KolkataUniversit Clermont Auvergne
Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ±±γ\tau^{\pm}\rightarrow\ell^{\pm}\gamma (=e,μ\ell=e,\mu) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ±±γ\tau^{\pm}\rightarrow\ell^{\pm}\gamma using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb1^{-1}, is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, B(τ±μ±γ)\mathcal{B}(\tau^{\pm}\rightarrow \mu^{\pm}\gamma) \leq 4.2×1084.2\times10^{-8} and B(τ±e±γ)\mathcal{B}(\tau^{\pm}\rightarrow e^{\pm}\gamma) \leq 5.6×1085.6\times10^{-8}, are set at 90\% confidence level.
The dark photon, AA^\prime, and the dark Higgs boson, hh^\prime, are hypothetical constituents featured in a number of recently proposed Dark Sector Models. Assuming prompt decays of both dark particles, we search for their production in the so-called Higgs-strahlung channel, e+eAhe^+e^- \rightarrow A^\prime h', with hAAh^\prime \rightarrow A^\prime A^\prime. We investigate ten exclusive final-states with Ae+eA^\prime \rightarrow e^+e^-, μ+μ\mu^+\mu^-, or π+π\pi^+\pi^-, in the mass ranges 0.10.1~GeV/c2c^2~< m_{A^\prime} < 3.5~GeV/c2c^2 and 0.20.2~GeV/c2c^2~< m_{h'} < 10.5~GeV/c2c^2. We also investigate three inclusive final-states, 2(e+e)X2(e^+e^-)X, 2(μ+μ)X2(\mu^+\mu^-)X, and (e+e)(μ+μ)X(e^+e^-)(\mu^+\mu^-)X, where XX denotes a dark photon candidate detected via missing mass, in the mass ranges 1.11.1~GeV/c2c^2~< m_{A^\prime} < 3.5~GeV/c2c^2 and 2.22.2~GeV/c2c^2~< m_{h'} < 10.5~GeV/c2c^2. Using the entire 977fb1977\,\mathrm{fb}^{-1} data set collected by Belle, we observe no significant signal. We obtain individual and combined 90%\% confidence level upper limits on the branching fraction times the Born cross section, B×σBorn\cal B \times \sigma_{\mathrm{Born}}, on the Born cross section, σBorn\sigma_{\mathrm{Born}}, and on the dark photon coupling to the dark Higgs boson times the kinetic mixing between the Standard Model photon and the dark photon, αD×ϵ2\alpha_D \times \epsilon^2. These limits improve upon and cover wider mass ranges than previous experiments. The limits from the final-states 3(π+π)3(\pi^+\pi^-) and 2(e+e)X2(e^+e^-)X are the first placed by any experiment. For αD\alpha_D equal to 1/137, m_{h'}< 8 GeV/c2c^2, and m_{A^\prime}< 1 GeV/c2c^2, we exclude values of the mixing parameter, ϵ\epsilon, above 8×104\sim 8 \times 10^{-4}.
A photon sphere is known as the geometrical structure shaping a black hole shadow. The mechanism is well understood for static or stationary black hole spacetimes such as the Schwarzschild and the Kerr spacetimes. In this paper, we investigate and explicitly specify a photon sphere that shapes a black hole shadow in a dynamical spacetime while taking the global structure of the spacetime into account. We consider dynamical and eternal black hole cases of the Vaidya spacetime, which represents a spherically symmetric black hole with accreting null dust. First, we numerically show that there are the dynamical photon sphere and photon orbits corresponding to the shadow edge in a moderate accretion case. Second, the photon spheres are derived analytically in special cases. Finally, we discuss the relation between our photon sphere and the several notions defined as a photon sphere generalization.
We present measurements of B+ -> Dbar*0 tau+ nu_tau and B+ -> Dbar^0 tau+ nu_tau decays in a data sample of 657 x 10^6 BBbar pairs collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. We find 446^{+58}_{-56} events of the decay B+ -> Dbar*0 tau+ nu_tau with a significance of 8.1 standard deviations, and 146^{+42}_{-41} events of the decay B+ -> Dbar0 tau+ nu_tau with a significance of 3.5 standard deviations. The latter signal provides the first evidence for this decay mode. The measured branching fractions are B(B+ -> Dbar*0 tau+ nu_tau)=(2.12^{+0.28}_{-0.27} (stat) +- 0.29 (syst)) % and B(B+ -> Dbar0 tau+ nu_tau)=(0.77 +- 0.22 (stat) +- 0.12 (syst)) %.
We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy: sin2θ23=0.5140.056+0.055\sin^2\theta_{23}=0.514^{+0.055}_{-0.056} and Δm322=(2.51±0.10)×103\Delta m^2_{32}=(2.51\pm0.10)\times 10^{-3} eV2^2/c4^4 Inverted Hierarchy: sin2θ23=0.511±0.055\sin^2\theta_{23}=0.511\pm0.055 and Δm132=(2.48±0.10)×103\Delta m^2_{13}=(2.48\pm0.10)\times 10^{-3} eV2^2/c4^4 The analysis accounts for multi-nucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region: δCP=[0.15,0.83]π\delta_{CP}=[0.15,0.83]\pi for normal hierarchy and δCP=[0.08,1.09]π\delta_{CP}=[-0.08,1.09]\pi for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes Factor of 2.2. The most probable values and 68% 1D credible intervals for the other oscillation parameters, when reactor data are included, are: sin2θ23=0.5280.038+0.055\sin^2\theta_{23}=0.528^{+0.055}_{-0.038} and Δm322=(2.51±0.11)×103|\Delta m^2_{32}|=(2.51\pm0.11)\times 10^{-3} eV2^2/c4^4.
One of the uncertainties in interpretation of ultra-high energy cosmic ray (UHECR) data comes from the hadronic interaction models used for air shower Monte Carlo (MC) simulations. The number of muons observed at the ground from UHECR-induced air showers is expected to depend upon the hadronic interaction model. One may therefore test the hadronic interaction models by comparing the measured number of muons with the MC prediction. In this paper, we present the results of studies of muon densities in UHE extensive air showers obtained by analyzing the signal of surface detector stations which should have high muonpurity\it{muon \, purity}. The muon purity of a station will depend on both the inclination of the shower and the relative position of the station. In 7 years' data from the Telescope Array experiment, we find that the number of particles observed for signals with an expected muon purity of \sim65% at a lateral distance of 2000 m from the shower core is 1.72±0.10(stat.)±0.37(syst.)1.72 \pm 0.10{\rm (stat.)} \pm 0.37 {\rm (syst.)} times larger than the MC prediction value using the QGSJET II-03 model for proton-induced showers. A similar effect is also seen in comparisons with other hadronic models such as QGSJET II-04, which shows a 1.67±0.10±0.361.67 \pm 0.10 \pm 0.36 excess. We also studied the dependence of these excesses on lateral distances and found a slower decrease of the lateral distribution of muons in the data as compared to the MC, causing larger discrepancy at larger lateral distances.
We report a high-statistics measurement of the branching fraction for tau^- --> pi^- pi^0 nu_tau and the invariant mass spectrum of the produced pi^- pi^0 system using 72.2 fb^-1 of data recorded with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider. The branching fraction obtained is (25.24 +/- 0.01 +/- 0.39)%, where the first error is statistical and the second is systematic. The unfolded pi^- pi^0 mass spectrum is used to determine resonance parameters for the rho(770), rho'(1450), and rho"(1700) mesons. We also use this spectrum to estimate the hadronic (2pi) contribution to the anomalous magnetic moment of the muon (a_{mu}^{pipi}). Our result for a_{mu}^{pipi} integrated over the mass range sqrt{s} = 2m_{pi} - 1.8 GeV/c^2 is a_{mu}^{pipi} = (523.5 +/- 1.5 (exp) +/- 2.6 (Br) +/- 2.5 (isospin))x 10^{-10}, where the first error is due to the experimental uncertainties, the second is due to the uncertainties in the branching fractions and the third is due to the uncertainties in the isospin-violating corrections.
University of MississippiUniversity of CincinnatiNational United UniversityCharles UniversityNational Central UniversityNiigata UniversityChinese Academy of Sciences logoChinese Academy of SciencesBudker Institute of Nuclear Physics SB RASKorea UniversityBeihang University logoBeihang UniversityIndiana UniversityNational Taiwan UniversityNagoya University logoNagoya UniversityUniversity of MelbourneIndian Institute of Technology BhubaneswarUniversity of LjubljanaINFN logoINFNPacific Northwest National LaboratoryUniversity of the Basque Country (UPV/EHU)École Polytechnique Fédérale de Lausanne (EPFL)Novosibirsk State UniversityHanyang UniversityHigh Energy Accelerator Research Organization (KEK)Indian Institute of Technology MadrasMoscow Institute of Physics and TechnologyKennesaw State UniversityUniversity of MariborKing Abdulaziz UniversitySOKENDAI (The Graduate University for Advanced Studies)Indian Institute of Technology HyderabadUniversity of Hawai’iKanagawa UniversityIKERBASQUE-Basque Foundation for ScienceIndian Institute of Science Education and Research (Mohali)Ludwig Maximilians UniversityJ. Stefan InstituteInstitute of High Energy Physics, ViennaKorea Institute of Science and Technology InformationKing Abdulaziz City for Science and TechnologyKarlsruher Institut fur TechnologieUniversity of Nova GoricaP.N. Lebedev Physical Institute of the Russian Academy of SciencesH. Niewodniczanski Institute of Nuclear PhysicsInstitute for High Energy Physics ProtvinoMax-Planck Institut f•ur PhysikMoscow Physical Engineering InstituteAdvanced Science Research Center, Japan Atomic Energy AgencyOsaka-city University
We search for CPCP violation in the charged charm meson decay D+π+π0D^{+}\to\pi^{+}\pi^{0}, based on a data sample corresponding to an integrated luminosity of 921 fb1\rm 921~fb^{-1} collected by the Belle experiment at the KEKB e+ee^{+}e^{-} asymmetric-energy collider. The measured CPCP violating asymmetry is [+2.31±1.24(stat)±0.23(syst)]%[+2.31\pm1.24({\rm stat})\pm0.23({\rm syst})]\%, which is consistent with the standard model prediction and has a significantly improved precision compared to previous results.
For open systems described by the quantum Markovian master equation, we study a possible extension of the Clausius equality to quasistatic operations between nonequilibrium steady states (NESSs). We investigate the excess heat divided by temperature (i.e., excess entropy production) which is transferred into the system during the operations. We derive a geometrical expression for the excess entropy production, which is analogous to the Berry phase in unitary evolution. Our result implies that in general one cannot define a scalar potential whose difference coincides with the excess entropy production in a thermodynamic process, and that a vector potential plays a crucial role in the thermodynamics for NESSs. In the weakly nonequilibrium regime, we show that the geometrical expression reduces to the extended Clausius equality derived by Saito and Tasaki (J. Stat. Phys. {\bf 145}, 1275 (2011)). As an example, we investigate a spinless electron system in quantum dots. We find that one can define a scalar potential when the parameters of only one of the reservoirs are modified in a non-interacting system, but this is no longer the case for an interacting system.
We report measurements of the branching fractions for B0π+πB^0\to\pi^+\pi^-, K+πK^+\pi^-, K+KK^+K^- and K0π0K^0\pi^0, and B+π+π0B^+\to\pi^+\pi^0, K+π0K^+\pi^0, K0π+K^0\pi^+ and K+Kˉ0K^+\bar{K}{}^0. The results are based on 10.4 fb1^{-1} of data collected on the Υ\Upsilon(4S) resonance at the KEKB e+ee^+e^- storage ring with the Belle detector, equipped with a high momentum particle identification system for clear separation of charged π\pi and KK mesons. We find ${\cal B}(B^0\to\pi^+\pi^-) =(0.56^{+0.23}_{-0.20}\pm 0.04)\times 10^{-5},, {\cal B}(B^0\to K^+\pi^-) =(1.93^{+0.34 +0.15}_{-0.32 -0.06})\times 10^{-5},, {\cal B}(B^+\to K^+\pi^0) =(1.63^{+0.35 +0.16}_{-0.33 -0.18})\times 10^{-5},, {\cal B}(B^+\to K^0\pi^+) =(1.37^{+0.57 +0.19}_{-0.48 -0.18})\times 10^{-5},and, and {\cal B}(B^0\to K^0\pi^0) =(1.60^{+0.72 +0.25}_{-0.59 -0.27})\times 10^{-5}$, where the first and second errors are statistical and systematic. We also set upper limits of ${\cal B}(B^+\to\pi^+\pi^0)<1.34\times 10^{-5},, {\cal B}(B^0\to K^+K^-)<0.27\times 10^{-5},and, and {\cal B}(B^+\to K^+\bar{K}{}^0)<0.50\times 10^{-5}$ at the 90% confidence level.
This paper reports measurements of final-state proton multiplicity, muon and proton kinematics, and their correlations in charged-current pionless neutrino interactions, measured by the T2K ND280 near detector in its plastic scintillator (C8_8H8_8) target. The data were taken between years 2010 and 2013, corresponding to approximately 6×1020\times10^{20} protons on target. Thanks to their exploration of the proton kinematics and of kinematic imbalances between the proton and muon kinematics, the results offer a novel probe of the nuclear-medium effects most pertinent to the (sub-)GeV neutrino-nucleus interactions that are used in accelerator-based long-baseline neutrino oscillation measurements. These results are compared to many neutrino-nucleus interaction models which all fail to describe at least part of the observed phase space. In case of events without a proton above a detection threshold in the final state, a fully consistent implementation of the local Fermi gas model with multinucleon interactions gives the best description of the data. In the case of at least one proton in the final state the spectral function model agrees well with the data, most notably when measuring the kinematic imbalance between the muon and the proton in the plane transverse to the incoming neutrino. A clear indication of existence of multinucleon interactions is observed. The effect of final-state interactions is also discussed.
Pre-DECIGO consists of three spacecraft arranged in an equilateral triangle with 100km arm lengths orbiting 2000km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary black holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect 30M30M\sim 30M_\odot-30M_\odot BBH mergers up to redshift z30z\sim 30. The cumulative event rate is $\sim 1.8\times 10^{5}\,{\rm events~yr^{-1}}$ in the Pop III origin model of BBHs like GW150914, and it saturates at z10z\sim 10, while in the primordial BBH (PBBH) model, the cumulative event rate is 3×104events yr1 \sim 3\times 10^{4}\,{\rm events~ yr^{-1}} at z=30z=30 even if only 0.1%0.1\% of the dark matter consists of PBHs, and it is still increasing at z=30z=30. In the Pop I/II model of BBHs, the cumulative event rate is (310)×105events yr1(3-10)\times10^{5}\,{\rm events~ yr^{-1}} and it saturates at $z \sim 6$. We present the requirements on orbit accuracy, drag free techniques, laser power, frequency stability, and interferometer test mass. For BBHs like GW150914 at 1Gpc, SNR90\sim 90 is achieved with the definition of Pre-DECIGO in the 0.011000.01-100Hz band. Pre-DECIGO can measure the mass spectrum and the zz-dependence of the merger rate to distinguish various models of BBHs like GW150914. Pre-DECIGO can also predict the direction of BBHs at z=0.1z=0.1 with an accuracy of 0.3deg2\sim 0.3\,{\rm deg}^2 and a merging time accuracy of 1\sim 1s at about a day before the merger so that ground-based GW detectors further developed at that time as well as electromagnetic follow-up observations can prepare for the detection of merger in advance. For intermediate mass BBHs at a large redshift z>10z > 10, the QNM frequency after the merger can be within the Pre-DECIGO band so that the ringing tail can also be detectable to confirm the Einstein theory of general relativity with SNR35\sim 35. [abridged]
We compute general expressions for two types of three-point functions of (semi-)short multiplets in four-dimensional N=2\mathcal{N}=2 superconformal field theories. These (semi-)short multiplets are called "Schur multiplets" and play an important role in the study of associated chiral algebras. The first type of the three-point functions we compute involves two half-BPS Schur multiplets and an arbitrary Schur multiplet, while the second type involves one stress tensor multiplet and two arbitrary Schur multiplets. From these three-point functions, we read off the corresponding OPE selection rules for the Schur multiplets. Our results particularly imply that there are non-trivial selection rules on the quantum numbers of Schur operators in these multiplets. We also give a conjecture on the selection rules for general Schur multiplets.
There are no more papers matching your filters at the moment.