Wannan Medical College
CogEvo-Edu introduces a multi-agent system for intelligent tutoring that employs a cognitive evolution paradigm to dynamically manage student profiles, knowledge bases, and teaching strategies. This system achieves superior performance in knowledge precision, cognitive coherence, and pedagogical strategy, outperforming existing LLM-based tutoring approaches on a complex STEM benchmark.
Global warming presents an unprecedented challenge to our planet however comprehensive understanding remains hindered by geographical biases temporal limitations and lack of standardization in existing research. An end to end visual analysis of global warming using three distinct temperature datasets is presented. A baseline adjusted from the Paris Agreements one point five degrees Celsius benchmark based on data analysis is employed. A closed loop design from visualization to prediction and clustering is created using classic models tailored to the characteristics of the data. This approach reduces complexity and eliminates the need for advanced feature engineering. A lightweight convolutional neural network and long short term memory model specifically designed for global temperature change is proposed achieving exceptional accuracy in long term forecasting with a mean squared error of three times ten to the power of negative six and an R squared value of zero point nine nine nine nine. Dynamic time warping and KMeans clustering elucidate national level temperature anomalies and carbon emission patterns. This comprehensive method reveals intricate spatiotemporal characteristics of global temperature variations and provides warming trend attribution. The findings offer new insights into climate change dynamics demonstrating that simplicity and precision can coexist in environmental analysis.
Accurate segmentation of COVID-19 CT images is crucial for reducing the severity and mortality rates associated with COVID-19 infections. In response to blurred boundaries and high variability characteristic of lesion areas in COVID-19 CT images, we introduce CDSE-UNet: a novel UNet-based segmentation model that integrates Canny operator edge detection and a dual-path SENet feature fusion mechanism. This model enhances the standard UNet architecture by employing the Canny operator for edge detection in sample images, paralleling this with a similar network structure for semantic feature extraction. A key innovation is the Double SENet Feature Fusion Block, applied across corresponding network layers to effectively combine features from both image paths. Moreover, we have developed a Multiscale Convolution approach, replacing the standard Convolution in UNet, to adapt to the varied lesion sizes and shapes. This addition not only aids in accurately classifying lesion edge pixels but also significantly improves channel differentiation and expands the capacity of the model. Our evaluations on public datasets demonstrate CDSE-UNet's superior performance over other leading models, particularly in segmenting large and small lesion areas, accurately delineating lesion edges, and effectively suppressing noise
Large language models (LLMs) are increasingly deployed as conversational tutors in STEM education, yet most systems still rely on a single LLM with a static retrieval-augmented generation (RAG) pipeline over course materials. This design struggles in complex domains such as digital signal processing (DSP), where tutors must maintain coherent long-term student models, manage heterogeneous knowledge bases, and adapt teaching strategies over extended interactions. We argue that retrieval, memory, and control should be treated as a coupled cognitive evolution process. We instantiate this view in CogEvo-Edu, a hierarchical educational multi-agent system comprising a Cognitive Perception Layer (CPL), a Knowledge Evolution Layer (KEL), and a Meta-Control Layer (MCL). CPL maintains dual memories and performs confidence-weighted consolidation to build structured, self-correcting student profiles under limited context. KEL assigns each knowledge chunk a spatiotemporal value that drives activation, semantic compression, and forgetting. MCL formulates tutoring as hierarchical sequential decision making, orchestrating specialized agents and jointly adapting CPL/KEL hyperparameters via a dual inner--outer loop. To evaluate CogEvo-Edu, we construct DSP-EduBench, a vertical benchmark for DSP tutoring with heterogeneous resources, simulated student profiles, and long-horizon interaction scripts. Using a three-model LLM-as-a-Judge ensemble, CogEvo-Edu raises the overall score from 5.32 to 9.23 and improves all six indicators over static RAG, simple memory, and a single-agent variant, demonstrating the value of jointly evolving student profiles, knowledge bases, and teaching policies.
There are no more papers matching your filters at the moment.