Federal Aviation Administration
Inspired by the success of deep learning (DL) in natural language processing (NLP), we applied cutting-edge DL techniques to predict flight departure demand in a strategic time horizon (4 hours or longer). This work was conducted in support of a MITRE-developed mobile application, Pacer, which displays predicted departure demand to general aviation (GA) flight operators so they can have better situation awareness of the potential for departure delays during busy periods. Field demonstrations involving Pacer's previously designed rule-based prediction method showed that the prediction accuracy of departure demand still has room for improvement. This research strives to improve prediction accuracy from two key aspects: better data sources and robust forecasting algorithms. We leveraged two data sources, Aviation System Performance Metrics (ASPM) and System Wide Information Management (SWIM), as our input. We then trained forecasting models with DL techniques of sequence to sequence (seq2seq) and seq2seq with attention. The case study has shown that our seq2seq with attention performs best among four forecasting algorithms tested. In addition, with better data sources, seq2seq with attention can reduce mean squared error (mse) over 60%, compared to the classical autoregressive (AR) forecasting method.
Transformers have become the de-facto standard in the natural language processing (NLP) field. They have also gained momentum in computer vision and other domains. Transformers can enable artificial intelligence (AI) models to dynamically focus on certain parts of their input and thus reason more effectively. Inspired by the success of transformers, we adopted this technique to predict strategic flight departure demand in multiple horizons. This work was conducted in support of a MITRE-developed mobile application, Pacer, which displays predicted departure demand to general aviation (GA) flight operators so they can have better situation awareness of the potential for departure delays during busy periods. Field demonstrations involving Pacer's previously designed rule-based prediction method showed that the prediction accuracy of departure demand still has room for improvement. This research strives to improve prediction accuracy from two key aspects: better data sources and robust forecasting algorithms. We leveraged two data sources, Aviation System Performance Metrics (ASPM) and System Wide Information Management (SWIM), as our input. We then trained forecasting models with temporal fusion transformer (TFT) for five different airports. Case studies show that TFTs can perform better than traditional forecasting methods by large margins, and they can result in better prediction across diverse airports and with better interpretability.
Generative artificial intelligence (AI) and large language models (LLMs) have gained rapid popularity through publicly available tools such as ChatGPT. The adoption of LLMs for personal and professional use is fueled by the natural interactions between human users and computer applications such as ChatGPT, along with powerful summarization and text generation capabilities. Given the widespread use of such generative AI tools, in this work we investigate how these tools can be deployed in a non-safety critical, strategic traffic flow management setting. Specifically, we train an LLM, CHATATC, based on a large historical data set of Ground Delay Program (GDP) issuances, spanning 2000-2023 and consisting of over 80,000 GDP implementations, revisions, and cancellations. We test the query and response capabilities of CHATATC, documenting successes (e.g., providing correct GDP rates, durations, and reason) and shortcomings (e.g,. superlative questions). We also detail the design of a graphical user interface for future users to interact and collaborate with the CHATATC conversational agent.
Historically, the rotorcraft community has experienced a higher fatal accident rate than other aviation segments, including commercial and general aviation. Recent advancements in artificial intelligence (AI) and the application of these technologies in different areas of our lives are both intriguing and encouraging. When developed appropriately for the aviation domain, AI techniques provide an opportunity to help design systems that can address rotorcraft safety challenges. Our recent work demonstrated that AI algorithms could use video data from onboard cameras and correctly identify different flight parameters from cockpit gauges, e.g., indicated airspeed. These AI-based techniques provide a potentially cost-effective solution, especially for small helicopter operators, to record the flight state information and perform post-flight analyses. We also showed that carefully designed and trained AI systems could accurately predict rotorcraft attitude (i.e., pitch and yaw) from outside scenes (images or video data). Ordinary off-the-shelf video cameras were installed inside the rotorcraft cockpit to record the outside scene, including the horizon. The AI algorithm could correctly identify rotorcraft attitude at an accuracy in the range of 80\%. In this work, we combined five different onboard camera viewpoints to improve attitude prediction accuracy to 94\%. In this paper, five onboard camera views included the pilot windshield, co-pilot windshield, pilot Electronic Flight Instrument System (EFIS) display, co-pilot EFIS display, and the attitude indicator gauge. Using video data from each camera view, we trained various convolutional neural networks (CNNs), which achieved prediction accuracy in the range of 79\% % to 90\% %. We subsequently ensembled the learned knowledge from all CNNs and achieved an ensembled accuracy of 93.3\%.
There are no more papers matching your filters at the moment.