Grab-NUS AI Lab
Recent advances toward foundation models for routing problems have shown great potential of a unified deep model for various VRP variants. However, they overlook the complex real-world customer distributions. In this work, we advance the Multi-Task VRP (MTVRP) setting to the more realistic yet challenging Multi-Task Multi-Distribution VRP (MTMDVRP) setting, and introduce SHIELD, a novel model that leverages both sparsity and hierarchy principles. Building on a deeper decoder architecture, we first incorporate the Mixture-of-Depths (MoD) technique to enforce sparsity. This improves both efficiency and generalization by allowing the model to dynamically select nodes to use or skip each decoder layer, providing the needed capacity to adaptively allocate computation for learning the task/distribution specific and shared representations. We also develop a context-based clustering layer that exploits the presence of hierarchical structures in the problems to produce better local representations. These two designs inductively bias the network to identify key features that are common across tasks and distributions, leading to significantly improved generalization on unseen ones. Our empirical results demonstrate the superiority of our approach over existing methods on 9 real-world maps with 16 VRP variants each.
Model counting, a fundamental task in computer science, involves determining the number of satisfying assignments to a Boolean formula, typically represented in conjunctive normal form (CNF). While model counting for CNF formulas has received extensive attention with a broad range of applications, the study of model counting for Pseudo-Boolean (PB) formulas has been relatively overlooked. Pseudo-Boolean formulas, being more succinct than propositional Boolean formulas, offer greater flexibility in representing real-world problems. Consequently, there is a crucial need to investigate efficient techniques for model counting for PB formulas. In this work, we propose the first exact Pseudo-Boolean model counter, PBCount, that relies on knowledge compilation approach via algebraic decision diagrams. Our extensive empirical evaluation shows that PBCount can compute counts for 1513 instances while the current state-of-the-art approach could only handle 1013 instances. Our work opens up several avenues for future work in the context of model counting for PB formulas, such as the development of preprocessing techniques and exploration of approaches other than knowledge compilation.
Next destination recommendation is an important task in the transportation domain of taxi and ride-hailing services, where users are recommended with personalized destinations given their current origin location. However, recent recommendation works do not satisfy this origin-awareness property, and only consider learning from historical destination locations, without origin information. Thus, the resulting approaches are unable to learn and predict origin-aware recommendations based on the user's current location, leading to sub-optimal performance and poor real-world practicality. Hence, in this work, we study the origin-aware next destination recommendation task. We propose the Spatial-Temporal Origin-Destination Personalized Preference Attention (STOD-PPA) encoder-decoder model to learn origin-origin (OO), destination-destination (DD), and origin-destination (OD) relationships by first encoding both origin and destination sequences with spatial and temporal factors in local and global views, then decoding them through personalized preference attention to predict the next destination. Experimental results on seven real-world user trajectory taxi datasets show that our model significantly outperforms baseline and state-of-the-art methods.
Street-view imagery provides us with novel experiences to explore different places remotely. Carefully calibrated street-view images (e.g. Google Street View) can be used for different downstream tasks, e.g. navigation, map features extraction. As personal high-quality cameras have become much more affordable and portable, an enormous amount of crowdsourced street-view images are uploaded to the internet, but commonly with missing or noisy sensor information. To prepare this hidden treasure for "ready-to-use" status, determining missing location information and camera orientation angles are two equally important tasks. Recent methods have achieved high performance on geo-localization of street-view images by cross-view matching with a pool of geo-referenced satellite imagery. However, most of the existing works focus more on geo-localization than estimating the image orientation. In this work, we re-state the importance of finding fine-grained orientation for street-view images, formally define the problem and provide a set of evaluation metrics to assess the quality of the orientation estimation. We propose two methods to improve the granularity of the orientation estimation, achieving 82.4% and 72.3% accuracy for images with estimated angle errors below 2 degrees for CVUSA and CVACT datasets, corresponding to 34.9% and 28.2% absolute improvement compared to previous works. Integrating fine-grained orientation estimation in training also improves the performance on geo-localization, giving top 1 recall 95.5%/85.5% and 86.8%/80.4% for orientation known/unknown tests on the two datasets.
Model counting is a fundamental task that involves determining the number of satisfying assignments to a logical formula, typically in conjunctive normal form (CNF). While CNF model counting has received extensive attention over recent decades, interest in Pseudo-Boolean (PB) model counting is just emerging partly due to the greater flexibility of PB formulas. As such, we observed feature gaps in existing PB counters such as a lack of support for projected and incremental settings, which could hinder adoption. In this work, our main contribution is the introduction of the PB model counter PBCount2, the first exact PB model counter with support for projected and incremental model counting. Our counter, PBCount2, uses our Least Occurrence Weighted Min Degree (LOW-MD) computation ordering heuristic to support projected model counting and a cache mechanism to enable incremental model counting. In our evaluations, PBCount2 completed at least 1.40x the number of benchmarks of competing methods for projected model counting and at least 1.18x of competing methods in incremental model counting.
There are no more papers matching your filters at the moment.