Shanghai Eye Disease Prevention and Treatment Center
Vision-grounded medical report generation aims to produce clinically accurate descriptions of medical images, anchored in explicit visual evidence to improve interpretability and facilitate integration into clinical workflows. However, existing methods often rely on separately trained detection modules that require extensive expert annotations, introducing high labeling costs and limiting generalizability due to pathology distribution bias across datasets. To address these challenges, we propose Self-Supervised Anatomical Consistency Learning (SS-ACL) -- a novel and annotation-free framework that aligns generated reports with corresponding anatomical regions using simple textual prompts. SS-ACL constructs a hierarchical anatomical graph inspired by the invariant top-down inclusion structure of human anatomy, organizing entities by spatial location. It recursively reconstructs fine-grained anatomical regions to enforce intra-sample spatial alignment, inherently guiding attention maps toward visually relevant areas prompted by text. To further enhance inter-sample semantic alignment for abnormality recognition, SS-ACL introduces a region-level contrastive learning based on anatomical consistency. These aligned embeddings serve as priors for report generation, enabling attention maps to provide interpretable visual evidence. Extensive experiments demonstrate that SS-ACL, without relying on expert annotations, (i) generates accurate and visually grounded reports -- outperforming state-of-the-art methods by 10\% in lexical accuracy and 25\% in clinical efficacy, and (ii) achieves competitive performance on various downstream visual tasks, surpassing current leading visual foundation models by 8\% in zero-shot visual grounding.
Researchers developed a metric to quantify visual token information in Vision Large Language Models, uncovering that information becomes uniform and diminishes in deeper layers. This insight led to a hybrid token pruning strategy that reduces inference latency by up to 73% and FLOPs by 74.4% in LLaVA-1.5-7B while maintaining performance.
Visual neural decoding refers to the process of extracting and interpreting original visual experiences from human brain activity. Recent advances in metric learning-based EEG visual decoding methods have delivered promising results and demonstrated the feasibility of decoding novel visual categories from brain activity. However, methods that directly map EEG features to the CLIP embedding space may introduce mapping bias and cause semantic inconsistency among features, thereby degrading alignment and impairing decoding performance. To further explore the semantic consistency between visual and neural signals. In this work, we construct a joint semantic space and propose a Visual-EEG Semantic Decouple Framework that explicitly extracts the semantic-related features of these two modalities to facilitate optimal alignment. Specifically, a cross-modal information decoupling module is introduced to guide the extraction of semantic-related information from modalities. Then, by quantifying the mutual information between visual image and EEG features, we observe a strong positive correlation between the decoding performance and the magnitude of mutual information. Furthermore, inspired by the mechanisms of visual object understanding from neuroscience, we propose an intra-class geometric consistency approach during the alignment process. This strategy maps visual samples within the same class to consistent neural patterns, which further enhances the robustness and the performance of EEG visual decoding. Experiments on a large Image-EEG dataset show that our method achieves state-of-the-art results in zero-shot neural decoding tasks.
There are no more papers matching your filters at the moment.