Hainan Institute of Zhejiang University
Self-training for unsupervised domain adaptive object detection is a challenging task, of which the performance depends heavily on the quality of pseudo boxes. Despite the promising results, prior works have largely overlooked the uncertainty of pseudo boxes during self-training. In this paper, we present a simple yet effective framework, termed as Probabilistic Teacher (PT), which aims to capture the uncertainty of unlabeled target data from a gradually evolving teacher and guides the learning of a student in a mutually beneficial manner. Specifically, we propose to leverage the uncertainty-guided consistency training to promote classification adaptation and localization adaptation, rather than filtering pseudo boxes via an elaborate confidence threshold. In addition, we conduct anchor adaptation in parallel with localization adaptation, since anchor can be regarded as a learnable parameter. Together with this framework, we also present a novel Entropy Focal Loss (EFL) to further facilitate the uncertainty-guided self-training. Equipped with EFL, PT outperforms all previous baselines by a large margin and achieve new state-of-the-arts.
80
Block transmission systems have been proven successful over frequency-selective channels. For time-varying channel such as in high-speed mobile communication and underwater communication, existing equalizers assume that channels over different data frames are independent. However, the real-world channels over different data frames are correlated, thereby indicating potentials for performance improvement. In this paper, we propose a joint channel estimation and equalization/decoding algorithm for a single-carrier system that exploits temporal correlations of channel between transmitted data frames. Leveraging the concept of dynamic compressive sensing, our method can utilize the information of several data frames to achieve better performance. The information not only passes between the channel and symbol, but also the channels over different data frames. Numerical simulations using an extensively validated underwater acoustic model with a time-varying channel establish that the proposed algorithm outperforms the former bilinear generalized approximate message passing equalizer and classic minimum mean square error turbo equalizer in bit error rate and channel estimation normalized mean square error. The algorithm idea we present can also find applications in other bilinear multiple measurements vector compressive sensing problems.
Forward-Looking Sonar (FLS) has started to gain attention in the field of near-bottom close-range underwater inspection because of its high resolution and high framerate features. Although Automatic Target Recognition (ATR) algorithms have been applied tentatively for object-searching tasks, human supervision is still indispensable, especially when involving critical areas. A clear FLS mosaic containing all suspicious information is in demand to help experts deal with tremendous perception data. However, previous work only considered that FLS is working in an ideal system configuration, which assumes an appropriate sonar imaging setup and the availability of accurate positioning data. Without those promises, the intra-frame and inter-frame artifacts will appear and degrade the quality of the final mosaic by making the information of interest invisible. In this paper, we propose a novel blending method for FLS mosaicing which can preserve interested information. A Long-Short Time Sliding Window (LST-SW) is designed to rectify the local statistics of raw sonar images. The statistics are then utilized to construct a Global Variance Map (GVM). The GVM helps to emphasize the useful information contained in images in the blending phase by classifying the informative and featureless pixels, thereby enhancing the quality of final mosaic. The method is verified using data collected in the real environment. The results show that our method can preserve more details in FLS mosaics for human inspection purposes in practice.
De novo molecule generation allows the search for more drug-like hits across a vast chemical space. However, lead optimization is still required, and the process of optimizing molecular structures faces the challenge of balancing structural novelty with pharmacological properties. This study introduces the Deep Genetic Molecular Modification Algorithm (DGMM), which brings structure modification to the level of medicinal chemists. A discrete variational autoencoder (D-VAE) is used in DGMM to encode molecules as quantization code, mol-gene, which incorporates deep learning into genetic algorithms for flexible structural optimization. The mol-gene allows for the discovery of pharmacologically similar but structurally distinct compounds, and reveals the trade-offs of structural optimization in drug discovery. We demonstrate the effectiveness of the DGMM in several applications.
Rotation estimation plays a fundamental role in many computer vision and robot tasks. However, efficiently estimating rotation in large inputs containing numerous outliers (i.e., mismatches) and noise is a recognized challenge. Many robust rotation estimation methods have been designed to address this challenge. Unfortunately, existing methods are often inapplicable due to their long computation time and the risk of local optima. In this paper, we propose an efficient and robust rotation estimation method. Specifically, our method first investigates geometric constraints involving only the rotation axis. Then, it uses stereographic projection and spatial voting techniques to identify the rotation axis and angle. Furthermore, our method efficiently obtains the optimal rotation estimation and can estimate multiple rotations simultaneously. To verify the feasibility of our method, we conduct comparative experiments using both synthetic and real-world data. The results show that, with GPU assistance, our method can solve large-scale (10610^6 points) and severely corrupted (90\% outlier rate) rotation estimation problems within 0.07 seconds, with an angular error of only 0.01 degrees, which is superior to existing methods in terms of accuracy and efficiency.
There are no more papers matching your filters at the moment.