Novartis Pharma AG
External data borrowing in clinical trial designs has increased in recent years. This is accomplished in the Bayesian framework by specifying informative prior distributions. To mitigate the impact of potential inconsistency (bias) between external and current data, robust approaches have been proposed. One such approach is the robust mixture prior arising as a mixture of an informative prior and a more dispersed prior inducing dynamic borrowing. This prior requires the choice of four quantities: the mixture weight, mean, dispersion and parametric form of the robust component. To address the challenge associated with choosing these quantities, we perform a case-by-case study of their impact on specific operating characteristics in one-arm and hybrid-control trials with a normal endpoint. All four quantities were found to strongly impact the operating characteristics. As already known, variance of the robust component is linked to robustness. Less known, however, is that its location can have severe impact on test and estimation error. Further, the impact of the weight choice is strongly linked with the robust component's location and variance. We provide recommendations for the choice of the robust component parameters, prior weight, alternative functional form for this component and considerations for evaluating operating characteristics.
This paper reviews and compares methods to assess treatment effect heterogeneity in the context of parametric regression models. These methods include the standard likelihood ratio tests, bootstrap likelihood ratio tests, and Goeman's global test motivated by testing whether the random effect variance is zero. We place particular emphasis on tests based on the score-residual of the treatment effect and explore different variants of tests in this class. All approaches are compared in a simulation study, and the approach based on residual scores is illustrated in a study comparing multiple doses versus placebo. Our findings demonstrate that score-residual based methods provide practical, flexible and reliable tools for identifying treatment effect heterogeneity and treatment effect modifiers, and can provide useful guidance for decision making around treatment effect heterogeneity.
Recurrent events are common and important clinical trial endpoints in many disease areas, e.g., cardiovascular hospitalizations in heart failure, relapses in multiple sclerosis, or exacerbations in asthma. During a trial, patients may experience intercurrent events, that is, events after treatment assignment which affect the interpretation or existence of the outcome of interest. In many settings, a treatment effect in the scenario in which the intercurrent event would not occur is of clinical interest. A proper estimation method of such a hypothetical treatment effect has to account for all confounders of the recurrent event process and the intercurrent event. In this paper, we propose estimators targeting hypothetical estimands in recurrent events with proper adjustments of baseline and internal time-varying covariates. Specifically, we apply inverse probability weighting (IPW) to the commonly used Lin-Wei-Yang-Ying (LWYY) and negative binomial (NB) models in recurrent event analysis. Simulation studies demonstrate that our approach outperforms alternative analytical methods in terms of bias and power.
There is growing interest in Bayesian clinical trial designs with informative prior distributions, e.g. for extrapolation of adult data to pediatrics, or use of external controls. While the classical type I error is commonly used to evaluate such designs, it cannot be strictly controlled and it is acknowledged that other metrics may be more appropriate. We focus on two common situations - borrowing control data or information on the treatment contrast - and discuss several fully probabilistic metrics to evaluate the risk of false positive conclusions. Each metric requires specification of a design prior, which can differ from the analysis prior and permits understanding of the behaviour of a Bayesian design under scenarios where the analysis prior differs from the true data generation process. The metrics include the average type I error and the pre-posterior probability of a false positive result. We show that, when borrowing control data, the average type I error is asymptotically (in certain cases strictly) controlled when the analysis and design prior coincide. We illustrate use of these Bayesian metrics with real applications, and discuss how they could facilitate discussions between sponsors, regulators and other stakeholders about the appropriateness of Bayesian borrowing designs for pivotal studies.
This paper proposes a Workflow for Assessing Treatment effeCt Heterogeneity (WATCH) in clinical drug development targeted at clinical trial sponsors. WATCH is designed to address the challenges of investigating treatment effect heterogeneity (TEH) in randomized clinical trials, where sample size and multiplicity limit the reliability of findings. The proposed workflow includes four steps: Analysis Planning, Initial Data Analysis and Analysis Dataset Creation, TEH Exploration, and Multidisciplinary Assessment. The workflow offers a general overview of how treatment effects vary by baseline covariates in the observed data, and guides interpretation of the observed findings based on external evidence and best scientific understanding. The workflow is exploratory and not inferential/confirmatory in nature, but should be pre-planned before data-base lock and analysis start. It is focused on providing a general overview rather than a single specific finding or subgroup with differential effect.
In clinical trials, patients may discontinue treatments prematurely, breaking the initial randomization and, thus, challenging inference. Stakeholders in drug development are generally interested in going beyond the Intention-To-Treat (ITT) analysis, which provides valid causal estimates of the effect of treatment assignment but does not inform on the effect of the actual treatment receipt. Our study is motivated by an RCT in oncology, where patients assigned the investigational treatment may discontinue it due to adverse events. We propose adopting a principal stratum strategy and decomposing the overall ITT effect into principal causal effects for groups of patients defined by their potential discontinuation behavior. We first show how to implement a principal stratum strategy to assess causal effects on a survival outcome in the presence of continuous time treatment discontinuation, its advantages, and the conclusions one can draw. Our strategy deals with the time-to-event intermediate variable that may not be defined for patients who would not discontinue; moreover, discontinuation time and the primary endpoint are subject to censoring. We employ a flexible model-based Bayesian approach to tackle these complexities, providing easily interpretable results. We apply this Bayesian principal stratification framework to analyze synthetic data of the motivating oncology trial. We simulate data under different assumptions that reflect real scenarios where patients' behavior depends on critical baseline covariates. Supported by a simulation study, we shed light on the role of covariates in this framework: beyond making structural and parametric assumptions more credible, they lead to more precise inference and can be used to characterize patients' discontinuation behavior, which could help inform clinical practice and future protocols.
In the context of clinical research, computational models have received increasing attention over the past decades. In this systematic review, we aimed to provide an overview of the role of so-called in silico clinical trials (ISCTs) in medical applications. Exemplary for the broad field of clinical medicine, we focused on in silico (IS) methods applied in drug development, sometimes also referred to as model informed drug development (MIDD). We searched PubMed and this http URL for published articles and registered clinical trials related to ISCTs. We identified 202 articles and 48 trials, and of these, 76 articles and 19 trials were directly linked to drug development. We extracted information from all 202 articles and 48 clinical trials and conducted a more detailed review of the methods used in the 76 articles that are connected to drug development. Regarding application, most articles and trials focused on cancer and imaging-related research while rare and pediatric diseases were only addressed in 14 articles and 5 trials, respectively. While some models were informed combining mechanistic knowledge with clinical or preclinical (in-vivo or in-vitro) data, the majority of models were fully data-driven, illustrating that clinical data is a crucial part in the process of generating synthetic data in ISCTs. Regarding reproducibility, a more detailed analysis revealed that only 24% (18 out of 76) of the articles provided an open-source implementation of the applied models, and in only 20% of the articles the generated synthetic data were publicly available. Despite the widely raised interest, we also found that it is still uncommon for ISCTs to be part of a registered clinical trial and their application is restricted to specific diseases leaving potential benefits of ISCTs not fully exploited.
Tables, figures, and listings (TFLs) are essential tools for summarizing clinical trial data. Creation of TFLs for reporting activities is often a time-consuming task encountered routinely during the execution of clinical trials. This study explored the use of large language models (LLMs) to automate the generation of TFLs through prompt engineering and few-shot transfer learning. Using public clinical trial data in ADaM format, our results demonstrated that LLMs can efficiently generate TFLs with prompt instructions, showcasing their potential in this domain. Furthermore, we developed a conservational agent named Clinical Trial TFL Generation Agent: An app that matches user queries to predefined prompts that produce customized programs to generate specific predefined TFLs.
We discuss how to handle matching-adjusted indirect comparison (MAIC) from a data analyst's perspective. We introduce several multivariate data analysis methods to assess the appropriateness of MAIC for a given data set. These methods focus on comparing the baseline variables used in the matching from a study that provides the summary statistics, or aggregated data (AD) and a study that provides individual patient level data (IPD). The methods identify situations when no numerical solutions are possible with the MAIC method. This helps to avoid misleading results being produced. Moreover, it has been observed that sometimes contradicting results are reported by two sets of MAIC analyses produced by two teams, each having their own IPD and applying MAIC using the AD published by the other team. We show that an intrinsic property of the MAIC estimated weights can be a contributing factor for this phenomenon.
We discuss how to handle matching-adjusted indirect comparison (MAIC) from a data analyst's perspective. We introduce several multivariate data analysis methods to assess the appropriateness of MAIC for a given data set. These methods focus on comparing the baseline variables used in the matching from a study that provides the summary statistics, or aggregated data (AD) and a study that provides individual patient level data (IPD). The methods identify situations when no numerical solutions are possible with the MAIC method. This helps to avoid misleading results being produced. Moreover, it has been observed that sometimes contradicting results are reported by two sets of MAIC analyses produced by two teams, each having their own IPD and applying MAIC using the AD published by the other team. We show that an intrinsic property of the MAIC estimated weights can be a contributing factor for this phenomenon.
In Oncology, trials evaluating drug combinations are becoming more common. While combination therapies bring the potential for greater efficacy, they also create unique challenges for ensuring drug safety. In Phase-I dose escalation trials of drug combinations, model-based approaches enable efficient use of information gathered, but the models need to account for trial complexities: appropriate modeling of interactions becomes increasingly important with growing numbers of drugs being tested simultaneously in a given trial. In principle, we can use data from multiple arms testing varying combinations to jointly estimate toxicity of the drug combinations. However, such efforts have highlighted limitations when modelling drug-drug interactions in the Bayesian Logistic Regression Model (BLRM) framework used to ensure patient safety. Previous models either do not account for non-monotonicity due to antagonistic toxicity, or exhibit the fundamental flaw of exponentially overpowering the contributions of the individual drugs in the dose-response. This specifically leads to issues when drug combinations exhibit antagonistic toxicity, in which case the toxicity probability gets vanishingly small as doses get very large. We put forward additional constraints inspired by Paracelsus' intuition of "the dose makes the poison" which avoid this flaw and present an improved interaction model which is compatible with these constraints. We create instructive data scenarios that showcase the improved behavior of this more constrained drug-drug interaction model in terms of preventing further dosing at overly toxic dose combinations and more sensible dose-finding under antagonistic drug toxicity. This model is now available in the open-source OncoBayes2 R package that implements the BLRM framework for an arbitrary number of drugs and trial arms.
Use of historical data in clinical trial design and analysis has shown various advantages such as reduction of within-study placebo-treated number of subjects and increase of study power. The meta-analytic-predictive (MAP) approach accounts with a hierarchical model for between-trial heterogeneity in order to derive an informative prior from historical (often control) data. In this paper, we introduce the package RBesT (R Bayesian Evidence Synthesis Tools) which implements the MAP approach with normal (known sampling standard deviation), binomial and Poisson endpoints. The hierarchical MAP model is evaluated by MCMC. The numerical MCMC samples representing the MAP prior are approximated with parametric mixture densities which are obtained with the expectation maximization algorithm. The parametric mixture density representation facilitates easy communication of the MAP prior and enables via fast and accurate analytical procedures to evaluate properties of trial designs with informative MAP priors. The paper first introduces the framework of robust Bayesian evidence synthesis in this setting and then explains how RBesT facilitates the derivation and evaluation of an informative MAP prior from historical control data. In addition we describe how the meta-analytic framework relates to further applications including probability of success calculations.
Natural language processing (NLP) of clinical trial documents can be useful in new trial design. Here we identify entity types relevant to clinical trial design and propose a framework called CT-BERT for information extraction from clinical trial text. We trained named entity recognition (NER) models to extract eligibility criteria entities by fine-tuning a set of pre-trained BERT models. We then compared the performance of CT-BERT with recent baseline methods including attention-based BiLSTM and Criteria2Query. The results demonstrate the superiority of CT-BERT in clinical trial NLP.
4
Assessing treatment effect heterogeneity (TEH) in clinical trials is crucial, as it provides insights into the variability of treatment responses among patients, influencing important decisions related to drug development. Furthermore, it can lead to personalized medicine by tailoring treatments to individual patient characteristics. This paper introduces novel methodologies for assessing treatment effects using the individual treatment effect as a basis. To estimate this effect, we use a Double Robust (DR) learner to infer a pseudo-outcome that reflects the causal contrast. This pseudo-outcome is then used to perform three objectives: (1) a global test for heterogeneity, (2) ranking covariates based on their influence on effect modification, and (3) providing estimates of the individualized treatment effect. We compare our DR-learner with various alternatives and competing methods in a simulation study, and also use it to assess heterogeneity in a pooled analysis of five Phase III trials in psoriatic arthritis. By integrating these methods with the recently proposed WATCH workflow (Workflow to Assess Treatment Effect Heterogeneity in Drug Development for Clinical Trial Sponsors), we provide a robust framework for analyzing TEH, offering insights that enable more informed decision-making in this challenging area.
Causal inference methods are gaining increasing prominence in pharmaceutical drug development in light of the recently published addendum on estimands and sensitivity analysis in clinical trials to the E9 guideline of the International Council for Harmonisation. The E9 addendum emphasises the need to account for post-randomization or `intercurrent' events that can potentially influence the interpretation of a treatment effect estimate at a trial's conclusion. Instrumental Variables (IV) methods have been used extensively in economics, epidemiology and academic clinical studies for `causal inference', but less so in the pharmaceutical industry setting until now. In this tutorial paper we review the basic tools for causal inference, including graphical diagrams and potential outcomes, as well as several conceptual frameworks that an IV analysis can sit within. We discuss in detail how to map these approaches to the Treatment Policy, Principal Stratum and Hypothetical `estimand strategies' introduced in the E9 addendum, and provide details of their implementation using standard regression models. Specific attention is given to discussing the assumptions each estimation strategy relies on in order to be consistent, the extent to which they can be empirically tested and sensitivity analyses in which specific assumptions can be relaxed. We finish by applying the methods described to simulated data closely matching two recent pharmaceutical trials to further motivate and clarify the ideas
Treatment of cancer has rapidly evolved over time in quite dramatic ways, for example from chemotherapies, targeted therapies to immunotherapies and chimeric antigen receptor T-cells. Nonetheless, the basic design of early phase I trials in oncology still follows pre-dominantly a dose-escalation design. These trials monitor safety over the first treatment cycle in order to escalate the dose of the investigated drug. However, over time studying additional factors such as drug combinations and/or variation in the timing of dosing became important as well. Existing designs were continuously enhanced and expanded to account for increased trial complexity. With toxicities occurring at later stages beyond the first cycle and the need to treat patients over multiple cycles, the focus on the first treatment cycle only is becoming a limitation in nowadays multi-cycle treatment therapies. Here we introduce a multi-cycle time-to-event model (TITE-CLRM: Time-Interval-To-Event Complementary-Loglog Regression Model) allowing guidance of dose-escalation trials studying multi-cycle therapies. The challenge lies in balancing the need to monitor safety of longer treatment periods with the need to continuously enroll patients safely. The proposed multi-cycle time to event model is formulated as an extension to established concepts like the escalation with over dose control principle. The model is motivated from a current drug development project and evaluated in a simulation study.
Throughout the different phases of a drug development program, randomized trials are used to establish the tolerability, safety, and efficacy of a candidate drug. At each stage one aims to optimize the design of future studies by extrapolation from the available evidence at the time. This includes collected trial data and relevant external data. However, relevant external data are typically available as averages only, for example from trials on alternative treatments reported in the literature. Here we report on such an example from a drug development for wet age-related macular degeneration. This disease is the leading cause of severe vision loss in the elderly. While current treatment options are efficacious, they are also a substantial burden for the patient. Hence, new treatments are under development which need to be compared against existing treatments. The general statistical problem this leads to is meta-analysis, which addresses the question of how we can combine datasets collected under different conditions. Bayesian methods have long been used to achieve partial pooling. Here we consider the challenge when the model of interest is complex (hierarchical and nonlinear) and one dataset is given as raw data while the second dataset is given as averages only. In such a situation, common meta-analytic methods can only be applied when the model is sufficiently simple for analytic approaches. When the model is too complex, for example nonlinear, an analytic approach is not possible. We provide a Bayesian solution by using simulation to approximately reconstruct the likelihood of the external summary and allowing the parameters in the model to vary under the different conditions. We first evaluate our approach using fake-data simulations and then report results for the drug development program that motivated this research.
TorchSurv is a Python package that serves as a companion tool to perform deep survival modeling within the PyTorch environment. Unlike existing libraries that impose specific parametric forms, TorchSurv enables the use of custom PyTorch-based deep survival models. With its lightweight design, minimal input requirements, full PyTorch backend, and freedom from restrictive survival model parameterizations, TorchSurv facilitates efficient deep survival model implementation and is particularly beneficial for high-dimensional and complex input data scenarios.
Dose selection is critical in pharmaceutical drug development, as it directly impacts therapeutic efficacy and patient safety of a drug. The Generalized Multiple Comparison Procedures and Modeling (MCP-Mod) approach is commonly used in Phase II trials for testing and estimation of dose-response relationships. However, its effectiveness in small sample sizes, particularly with binary endpoints, is hindered by issues like complete separation in logistic regression, leading to non-existence of estimates. Motivated by an actual clinical trial using the MCP-Mod approach, this paper introduces penalized maximum likelihood estimation (MLE) and randomization-based inference techniques to address these challenges. Randomization-based inference allows for exact finite sample inference, while population-based inference for MCP-Mod typically relies on asymptotic approximations. Simulation studies demonstrate that randomization-based tests can enhance statistical power in small to medium-sized samples while maintaining control over type-I error rates, even in the presence of time trends. Our results show that residual-based randomization tests using penalized MLEs not only improve computational efficiency but also outperform standard randomization-based methods, making them an adequate choice for dose-finding analyses within the MCP-Mod framework. Additionally, we apply these methods to pharmacometric settings, demonstrating their effectiveness in such scenarios. The results in this paper underscore the potential of randomization-based inference for the analysis of dose-finding trials, particularly in small sample contexts.
Interim analyses for group-sequential decision making are prevalent in clinical trials. Methodology is well established and has been routinely implemented over the last decades. Still, confusions and uncertainties on aspects of how to operationalize and interpret interim analyses exist for many stakeholders. In this paper, a team of statisticians from the pharmaceutical industry, academia, and regulatory agencies provide a multi-stakeholder perspective on the key concepts behind interim analyses, with the aim to introduce standard terminology to mitigate misunderstandings and facilitate clearer discussions.
There are no more papers matching your filters at the moment.