Universite de Paris
We report JWST/MIRI 15 μ\mum phase curves of TRAPPIST-1 b and c, revealing thermal emission consistent with their irradiation levels, assuming no efficient heat redistribution. We find that TRAPPIST-1 b shows a high dayside brightness temperature (490 ±\pm 17 K), no significantly detectable nightside emission (Fb,Night,maxF_{\rm b, Night, max} = 3927+5539_{-27}^{+55} ppm), and no phase offset -- features consistent with a low-albedo, airless ultramafic rocky surface. TRAPPIST-1 c exhibits a lower dayside brightness temperature (369 ±\pm 23 K), and a nightside flux statistically indistinguishable from that of TRAPPIST-1 b (Fc,Night,maxF_{\rm c, Night, max} = 6243+6062_{-43}^{+60} ppm). Atmosphere models with surface pressures \geq1 bar and efficient greenhouse effects are strongly disfavoured for both planets. TRAPPIST-1 b is unlikely to possess any substantial atmosphere, while TRAPPIST-1 c may retain a tenuous, greenhouse-poor O2_2-dominated atmosphere or be similarly airless with a more reflective surface. These results suggest divergent evolutionary pathways or atmospheric loss processes, despite similar compositions. These measurements tightly constrain atmosphere retention in the inner TRAPPIST-1 system.
University of Washington logoUniversity of WashingtonCNRS logoCNRSUniversity of Toronto logoUniversity of TorontoUniversity of MississippiUniversity of CincinnatiCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Cambridge logoUniversity of CambridgeINFN Sezione di NapoliMonash University logoMonash UniversityNational Central UniversityNational Astronomical Observatory of JapanVanderbilt UniversityUniversity of Notre Dame logoUniversity of Notre DameTel Aviv University logoTel Aviv UniversityUniversity College London logoUniversity College LondonNikhefGeorgia Institute of Technology logoGeorgia Institute of TechnologyUniversity of Science and Technology of China logoUniversity of Science and Technology of ChinaTsinghua University logoTsinghua UniversityThe Chinese University of Hong Kong logoThe Chinese University of Hong KongUniversity of MelbourneThe University of Texas at Austin logoThe University of Texas at AustinUniversity of WarsawPeking University logoPeking UniversityTexas A&M University logoTexas A&M UniversityUniversity of British Columbia logoUniversity of British ColumbiaNorthwestern University logoNorthwestern UniversityNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterLouisiana State UniversityUniversity of Florida logoUniversity of FloridaINFN Sezione di PisaRutherford Appleton LaboratoryUniversity of Minnesota logoUniversity of MinnesotaUniversity of Maryland logoUniversity of MarylandUniversity of Tokyo logoUniversity of TokyoIndian Institute of ScienceNational Taiwan Normal UniversityThe Pennsylvania State University logoThe Pennsylvania State UniversityRochester Institute of TechnologyGran Sasso Science InstituteSorbonne Université logoSorbonne UniversitéUniversity of Massachusetts AmherstAustralian National University logoAustralian National UniversityUniversity of AucklandCardiff UniversityUniversity of GlasgowLeibniz Universität HannoverUniversity of PortsmouthUniversidade Federal do ABCHigh Energy Accelerator Research Organization (KEK)Indian Institute of Technology MadrasUniversity of StrathclydeUniversità di GenovaUniversity of Alabama in HuntsvilleSyracuse UniversityUniversity of SannioRMIT UniversityInstituto Nacional de Pesquisas EspaciaisUniversità di CamerinoUniversitat de les Illes BalearsMaastricht UniversityUniversity of BirminghamUniversità di TriesteNational Cheng Kung UniversityAix Marseille UniversityKyushu UniversityUniversity of South CarolinaWashington State UniversityUniversity of OregonNational Tsing-Hua UniversityKindai UniversityThe University of Western AustraliaUniversidade de AveiroEötvös Loránd UniversityUniversitat Autònoma de BarcelonaSofia UniversityNicolaus Copernicus Astronomical CenterInstituto de Fisica Teorica UAM/CSICShanghai Astronomical ObservatoryNicolaus Copernicus UniversityINFN, Laboratori Nazionali di FrascatiUniversity of Western OntarioUniversità di Napoli Federico IIUniversity of California, Santa Cruz logoUniversity of California, Santa CruzEmbry-Riddle Aeronautical UniversityUniversity of Hawai’iUniversity of Electro-CommunicationsNational Chung Hsing UniversityMontana State UniversityInternational Centre for Theoretical SciencesINFN Sezione di PerugiaIstituto Nazionale di Alta MatematicaThe University of SheffieldUniversité de la Côte d’AzurPhysikalisch-Technische BundesanstaltInstitut de Física d’Altes Energies (IFAE)INFN - Sezione di PadovaUniversity of the Balearic IslandsLaboratoire Kastler BrosselUniversità di FirenzeUniversity of ToyamaIstituto Nazionale di OtticaINFN-Sezione di GenovaUniversiteit AntwerpenThe University of MississippiUniversity of SzegedUniversità di PerugiaINFN-Sezione di BolognaUniversità di CagliariVU AmsterdamInstitute for Cosmic Ray Research, University of TokyoINFN Sezione di Roma Tor VergataUniversité de Paris, CNRS, Astroparticule et Cosmologie,California State University, Los AngelesUniversità di SienaLIGO Livingston ObservatoryNational Center for High-Performance ComputingNCBJLaboratoire AstroParticule et Cosmologie - CNRSUniversità di Urbino Carlo BoUniversità degli Studi di SassariUniversità di Trento, INFN-TIFPAWigner RCP, RMKIINFN Sezione di CagliariRESCEU, University of TokyoUniv Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1Universite de Nice, ARTEMIS, CNRS, Observatoire de la Cote d’AzurIstituto de Fısica Teórica, UAM/CSICAlbert-Einstein-Institut, HanoverAPC, AstroParticule et Cosmologie, CNRSGSSI, INFN, Laboratori Nazionali del Gran SassoNational Institute of Technology, Akashi CollegeLAPP, Universit´e Savoie Mont BlancUniversità di NapoliUniversità degli Studi di CamerinoThe University of Sheffield, Department of Physics and AstronomyUniversite de Paris* National and Kapodistrian University of AthensFriedrich-Schiller-Universität JenaUniversit Grenoble AlpesUniversit degli Studi di GenovaUniversit Libre de BruxellesUniversit di TrentoUniversit di SalernoUniversit degli Studi di PadovaUniversit de BordeauxUniversit di Roma La SapienzaUniversit Paris CitUniversit de StrasbourgUniversit de LyonUniversit di PisaINAF Osservatorio Astronomico di PadovaUniversit de MontpellierUniversit di Roma Tor VergataUniversit Di BolognaINAF ` Osservatorio Astronomico di TriesteINFN Sezione di Firenze
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates 103yr1\leq 10^{-3}\, {\rm yr}^{-1}. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115_042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90% credibility, to mg2.42×1023eV/c2m_g \leq 2.42 \times 10^{-23} \mathrm{eV}/c^2. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR.
The most powerful persistent accelerators in the Universe are jetted active galaxies. Blazars, galaxies whose jets are directed towards Earth, dominate the extragalactic gamma-ray sky. Still, most of the highest-energy particle accelerators likely elude detection. These extreme blazars, whose radiated energy can peak beyond 10 TeV, are ideal targets to study particle acceleration and radiative processes, and may provide links to cosmic rays and astrophysical neutrinos. The growing number of extreme blazars observed at TeV energies has been critical for the emergence of gamma-ray cosmology, including measurements of the extragalactic background light, tight bounds on the intergalactic magnetic field, and constraints on exotic physics at energies inaccessible with human-made accelerators. Tremendous progress has been achieved over the past decade, which bodes well for the future, particularly with the deployment of the Cherenkov Telescope Array.
Gravitational lensing allows the detection of binary black holes (BBH) at cosmological distances with chirp masses that appear to be enhanced by 1+z1+z in the range 195%195\%), from which we infer a factor 5\simeq 5 higher intrinsic rate of NSBH events than BBH events, reflecting a higher proportion of neutron stars formed by early star formation. We predict a distinctive locus for lensed NSBH events in the observed binary mass plane, spanning $1
We explain how the axioms of Conformal Field Theory are used to make predictions about critical exponents of continuous phase transitions in three dimensions, via a procedure called the conformal bootstrap. The method assumes conformal invariance of correlation functions, and imposes some relations between correlation functions of different orders. Numerical analysis shows that these conditions are incompatible unless the critical exponents take particular values, or more precisely that they must belong to a small island in the parameter space.
We study the training dynamics of a shallow neural network with quadratic activation functions and quadratic cost in a teacher-student setup. In line with previous works on the same neural architecture, the optimization is performed following the gradient flow on the population risk, where the average over data points is replaced by the expectation over their distribution, assumed to be this http URL first derive convergence properties for the gradient flow and quantify the overparameterization that is necessary to achieve a strong signal recovery. Then, assuming that the teachers and the students at initialization form independent orthonormal families, we derive a high-dimensional limit for the flow and show that the minimal overparameterization is sufficient for strong recovery. We verify by numerical experiments that these results hold for more general initializations.
Extreme mass ratio inspirals (EMRIs) are among the primary targets for the Laser Interferometer Space Antenna (LISA). The extreme mass ratios of these systems result in relatively weak GW signals, that can be individually resolved only for cosmologically nearby sources (up to z2z\approx2). The incoherent piling up of the signal emitted by unresolved EMRIs generate a confusion noise, that can be formally treated as a stochastic GW background (GWB). In this paper, we estimate the level of this background considering a collection of astrophysically motivated EMRI models, spanning the range of uncertainties affecting EMRI formation. To this end, we employed the innovative Augmented Analytic Kludge waveforms and used the full LISA response function. For each model, we compute the GWB SNR and the number of resolvable sources. Compared to simplified computations of the EMRI signals from the literature, we find that for a given model the GWB SNR is lower by a factor of 2\approx 2 whereas the number of resolvable sources drops by a factor 3-to-5. Nonetheless, the vast majority of the models result in potentially detectable GWB which can also significantly contribute to the overall LISA noise budget in the 1-10 mHz frequency range.
Stars and planets form within cold, dark molecular clouds. In these dense regions, where starlight cannot penetrate, cosmic rays (CRs) are the dominant source of ionization -- driving interstellar chemistry(Dalgarno (2006, PNAS, 103, 12269)), setting the gas temperature(Goldsmith et al. (1969, ApJ, 158, 173)), and enabling coupling to magnetic fields(McKee & Ostriker (2007, ARA&A, 45, 565; arXiv:0707.3514)). Together, these effects regulate the collapse of clouds and the onset of star formation. Despite this importance, the cosmic-ray ionization rate, ζ\zeta, has never been measured directly. Instead, this fundamental parameter has been loosely inferred from indirect chemical tracers and uncertain assumptions, leading to published values that span nearly two orders of magnitude and limiting our understanding of star formation physics. Here, we report the first direct detection of CR-excited vibrational H2_2 emission, using \textit{James Webb Space Telescope} (JWST) observations of the starless core Barnard 68 (B68). The observed emission pattern matches theoretical predictions for CR excitation precisely, confirming a decades-old theoretical proposal long considered observationally inaccessible. This result enables direct measurement of ζ\zeta, effectively turning molecular clouds into natural, light-year-sized, cosmic-ray detectors. It opens a transformative observational window into the origin, propagation, and role of cosmic rays in star formation and galaxy evolution.
Pulsar Timing Array experiments probe the presence of possible scalar or pseudoscalar ultralight dark matter particles through decade-long timing of an ensemble of galactic millisecond radio pulsars. With the second data release of the European Pulsar Timing Array, we focus on the most robust scenario, in which dark matter interacts only gravitationally with ordinary baryonic matter. Our results show that ultralight particles with masses 1024.0 eVm1023.3 eV10^{-24.0}~\text{eV} \lesssim m \lesssim 10^{-23.3}~\text{eV} cannot constitute 100%100\% of the measured local dark matter density, but can have at most local density ρ0.3\rho\lesssim 0.3 GeV/cm3^3.
Using direct numerical simulations, researchers explored the dynamical stability of vortex lattices in three-dimensional rotating flows, finding they are metastable and break down stochastically. An optimal Ekman drag coefficient exists that maximizes their average lifetime, and smaller lattices tend to persist longer.
Mathematical modeling offers the opportunity to test hypothesis concerning Myeloproliferative emergence and development. We tested different mathematical models based on a training cohort (n=264 patients) (Registre de la côte d'Or) to determine the emergence and evolution times before JAK2V617F classical Myeloproliferative disorders (respectively Polycythemia Vera and Essential Thrombocytemia) are diagnosed. We dissected the time before diagnosis as two main periods: the time from embryonic development for the JAK2V617F mutation to occur, not disappear and enter in proliferation, and a second time corresponding to the expansion of the clonal population until diagnosis. We demonstrate using progressively complexified models that the rate of active mutation occurrence is not constant and doesn't just rely on individual variability, but rather increases with age and takes a median time of 63.1+/-13 years. A contrario, the expansion time can be considered as constant: 8.8 years once the mutation has emerged. Results were validated in an external cohort (national FIMBANK Cohort, n=1248 patients). Analyzing JAK2V617F Essential Thrombocytema versus Polycythemia Vera, we noticed that the first period of time (rate of active homozygous mutation occurrence) for PV takes approximatively 1.5 years more than for ET to develop when the expansion time was quasi-similar. In conclusion, our multi-step approach and the ultimate time-dependent model of MPN emergence and development demonstrates that the emergence of a JAK2V617F mutation should be linked to an aging mechanism, and indicates a 8-9 years period of time to develop a full MPN.
24 Oct 2024
Single-shot hyperspectral wavefront sensing is essential for applications like spatio-spectral coupling metrology in high power laser or fast material dispersion imaging. Under broadband illumination, traditional wavefront sensors assume an achromatic wavefront, which makes them unsuitable. We introduce a hyperspectral wavefront sensing scheme based on the Hartmann wavefront sensing principles, employing a multicore fiber as a modified Hartmann mask to overcome these limitations. Our system leverages the angular memory effect and spectral decorrelation from the multicore fiber, encoding wavefront gradients into displacements and the spectral information into uncorrelated patterns. This method retains the simplicity, compactness, and single-shot capability of conventional wavefront sensors, with only a slight increase in computational complexity. It also allows a tunable trade-off between spatial and spectral resolution. We demonstrate its efficacy for recording the hyperspectral wavefront cube from single-pulse acquisitions at the Apollon multi-PW laser facility, and for performing multispectral microscopic imaging of dispersive phase objects.
We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7 (7.6)$\times 10^{20}$ protons on target in neutrino (antineutrino) mode. A selection of neutral current interaction samples are also used to enhance the sensitivity to sterile mixing. No evidence of sterile neutrino mixing in the 3+1 model was found from a simultaneous fit to the charged-current muon, electron and neutral current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude sin2θ24\sin^2\theta_{24} for the sterile neutrino mass splitting \Delta m^2_{41}<3\times 10^{-3} eV2/c4^2/c^4.
The Enhanced Resolution Imager and Spectrograph (ERIS) is the new near-infrared instrument at the VLT-UT4. ERIS replaces and extends the observational capabilities formerly provided by SINFONI and NACO: integral field spectroscopy at 1 - 2.5 μ\mum, imaging at 1 - 5 μ\mum with several options for high-contrast imaging, and long-slit spectroscopy. In particular, a vortex coronagraph is now available for high contrast observations at L and M band. It is implemented using annular groove (or vortex) phase masks (one for each of the L and M bands) in a focal plane, and a Lyot stop in a downstream pupil plane. The vortex coronagraph has a discovery space starting already at \sim1λ/D\lambda/D, and works well in broadbands. However, to reach its optimal performance, it is critical to correct for slow pointing errors onto the vortex phase mask, which mandates a dedicated pointing control strategy. To do so, a control loop based on the QACITS algorithm has been developed and commissioned for ERIS. Good pointing stability is now regularly achieved with errors between 0.01 and 0.02 λ/D\lambda/D and a correction rate of 0.2 Hz. In this contribution, we first review the design of the ERIS vortex coronagraph. We then detail the implementation of the QACITS algorithm describing the entire observing sequence, including the calibration steps, the initial centering, and the stabilization during the observing template. We then discuss performance based on commissioning data in terms of pointing accuracy and stability. Finally, we present post-processed contrast curves obtained during commissioning and compare them with NACO vortex data, showing a significant improvement of about 1 mag at all separations.
Current numerical conformal bootstrap techniques carve out islands in theory space by repeatedly checking whether points are allowed or excluded. We propose a new method for searching theory space that replaces the binary information "allowed"/"excluded" with a continuous "navigator" function that is negative in the allowed region and positive in the excluded region. Such a navigator function allows one to efficiently explore high-dimensional parameter spaces and smoothly sail towards any islands they may contain. The specific functions we introduce have several attractive features: they are everywhere well-defined, can be computed with standard methods, and evaluation of their gradient is immediate due to an SDP gradient formula that we provide. The latter property allows for the use of efficient quasi-Newton optimization methods, which we illustrate by navigating towards the 3d Ising island.
We compute the typical number of equilibria of the Generalized Lotka-Volterra equations describing species-rich ecosystems with random, non-reciprocal interactions using the replicated Kac-Rice method. We characterize the multiple-equilibria phase by determining the average abundance and similaritybetween equilibria as a function of their diversity (i.e. of the number of coexisting species) and of the variability of the interactions. We show that linearly unstable equilibria are dominant, and that the typical number of equilibria differs with respect to the average number.
The Laser Interferometer Space Antenna (LISA) mission, scheduled for launch in the early 2030s, is a gravitational wave observatory in space designed to detect sources emitting in the milli-Hertz band. In contrast to the present ground based detectors, the LISA data are expected to be a signaldominated, with strong and weak gravitational wave signals overlapping in time and in frequency. Astrophysical population models predict a sufficient number of signals in the LISA band to blend together and form an irresolvable foreground noise. In this work, we present a generic method for characterizing the foreground signals originating from a given astrophysical population of coalescing compact binaries. Assuming idealized detector conditions and perfect data analysis technique capable of identifying and removing the bright sources, we apply an iterative procedure which allows us to predict the different levels of foreground noise.
CNRS logoCNRSUniversity of Amsterdam logoUniversity of AmsterdamCharles UniversityNikhefJoint Institute for Nuclear ResearchCSICUniversity of GranadaTechnical University of Munich logoTechnical University of MunichAustralian National University logoAustralian National UniversityLeiden University logoLeiden UniversityCEA logoCEAUniversity of BelgradeUtrecht UniversityCadi Ayyad UniversityUniversity of JohannesburgMohammed V University in RabatAix-Marseille UnivCzech Technical University in PragueUniversit`a di BolognaIMT AtlantiqueUniversit`a di CataniaUniversitat Polit`ecnica de Val`enciaUniversite de NantesUniversitat de ValenciaNational Centre for Nuclear ResearchINFN-Sezione di GenovaINFN-Sezione di BolognaINFN Sezione di RomaUniversit`a Degli Studi Di Napoli “Federico II”Universite de StrasbourgUniversit‘a di SalernoUniversit\`a degli Studi della Campania "Luigi Vanvitelli"INFN Laboratori Nazionali del SudTbilisi State UniversityUniversity Mohammed IUniversity of JaenUniversit´e de MontpellierWitwatersrand UniversityIstituto Nazionale di Fisica Nucleare, Sezione di NapoliUniversite de ParisRoyal Netherlands Institute for Sea Research (NIOZ)Universite de Haute AlsaceINFN (Sezione di Bari)IFIC (Instituto de F´ısica Corpuscular)Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH)Universit´e Paris Cit´eUniversit´e Paris Cˆote d’AzurFriedrich-Alexander-Universit¨at Erlangen-N¨rnbergIstituto Nazionale di Fisica Nucleare - Sezione di CataniaUniversità di Ferrara* National and Kapodistrian University of Athens* North–West UniversityUniversita’ ”La Sapienza”Université Paris-SaclayUniversită di GenovaSorbonne Université
The measurement of the flux of muons produced in cosmic ray air showers is essential for the study of primary cosmic rays. Such measurements are important in extensive air shower detectors to assess the energy spectrum and the chemical composition of the cosmic ray flux, complementary to the information provided by fluorescence detectors. Detailed simulations of the cosmic ray air showers are carried out, using codes such as CORSIKA, to estimate the muon flux at sea level. These simulations are based on the choice of hadronic interaction models, for which improvements have been implemented in the post-LHC era. In this work, a deficit in simulations that use state-of-the-art QCD models with respect to the measurement deep underwater with the KM3NeT neutrino detectors is reported. The KM3NeT/ARCA and KM3NeT/ORCA neutrino telescopes are sensitive to TeV muons originating mostly from primary cosmic rays with energies around 10 TeV. The predictions of state-of-the-art QCD models show that the deficit with respect to the data is constant in zenith angle; no dependency on the water overburden is observed. The observed deficit at a depth of several kilometres is compatible with the deficit seen in the comparison of the simulations and measurements at sea level.
Set Disjointness on a Line is a variant of the Set Disjointness problem in a distributed computing scenario with d+1d+1 processors arranged on a path of length dd. It was introduced by Le Gall and Magniez (PODC 2018) for proving lower bounds on the quantum distributed complexity of computing the diameter of an arbitrary network in the CONGEST model. However, they were only able to provide a lower bound when the local memory used by the processors on the intermediate vertices of the path consists of O(logn)( \log n) qubits for nn-bit inputs. We prove an unconditional lower bound of Ω~(nd23+n)\widetilde{\Omega}\big(\sqrt[3]{n d^2}+\sqrt{n} \, \big) rounds for Set Disjointness on a Line with d+1d + 1 processors. The result gives us a new lower bound of Ω~(nδ23+n)\widetilde{\Omega} \big( \sqrt[3]{n\delta^2}+\sqrt{n} \, \big) on the number of rounds required for computing the diameter δ\delta of any nn-node network with quantum messages of size O(logn)(\log n) in the CONGEST model. We draw a connection between the distributed computing scenario above and a new model of query complexity. The information-theoretic technique we use for deriving the round lower bound for Set Disjointness on a Line also applies to the number of rounds in this query model. We provide an algorithm for Set Disjointness in this query model with round complexity that matches the round lower bound stated above, up to a polylogarithmic factor. This presents a barrier for obtaining a better round lower bound for Set Disjointness on the Line. At the same time, it hints at the possibility of better communication protocols for the problem.
In this work we present IMRPhenomTP, a time domain phenomenological model for the dominant l=2l=2, m=2m=|2| modes of coalescing black hole binary systems and its extension to describe general precessing systems within the "twisting up" approximation. The underlying non-precessing model is calibrated to the new release of Numerical Relativity simulations of the SXS Collaboration and its accuracy is comparable to the state-of-the-art non-precessing dominant mode models as IMRPhenomX and SEOBNRv4. The precessing extension allows for flexibility choosing the Euler angles of the time-dependent rotation between the co-precessing and the inertial reference systems, including the single spin NNLO and the double spin MSA PN descriptions present in other models, numerical integration of the orbit averaged spin evolution equations, different choices for the evolution of the orbital angular momentum norm and a simple approximation to the ringdown behaviour.
There are no more papers matching your filters at the moment.