general-finance
This paper investigates both short and long-run interaction between BIST-100 index and CDS prices over January 2008 to May 2015 using ARDL technique. The paper documents several findings. First, ARDL analysis shows that 1 TL increase in CDS shrinks BIST-100 index by 22.5 TL in short-run and 85.5 TL in long-run. Second, 1000 TL increase in BIST index price causes 25 TL and 44 TL reducation in Turkey's CDS prices in short- and long-run respectively. Third, a percentage increase in interest rate shrinks BIST index by 359 TL and a percentage increase in inflation rate scales CDS prices up to 13.34 TL both in long-run. In case of short-run, these impacts are limited with 231 TL and 5.73 TL respectively. Fourth, a kurush increase in TL/USD exchange rate leads 24.5 TL (short-run) and 78 TL (long-run) reductions in BIST, while it augments CDS prices by 2.5 TL (short-run) and 3 TL (long-run) respectively. Fifth, each negative political events decreases BIST by 237 TL in short-run and 538 TL in long-run, while it increases CDS prices by 33 TL in short-run and 89 TL in long-run. These findings imply the highly dollar indebted capital structure of Turkish firms, and overly sensitivity of financial markets to the uncertainties in political sphere. Finally, the paper provides evidence for that BIST and CDS with control variables drift too far apart, and converge to a long-run equilibrium at a moderate monthly speed.
Bitcoin operates as a macroeconomic paradox: it combines a strictly predetermined, inelastic monetary issuance schedule with a stochastic, highly elastic demand for scarce block space. This paper empirically validates the Endogenous Constraint Hypothesis, positing that protocol-level throughput limits generate a non-linear negative feedback loop between network friction and base-layer monetary velocity. Using a verified Transaction Cost Index (TCI) derived from this http URL on-chain data and Hansen's (2000) threshold regression, we identify a definitive structural break at the 90th percentile of friction (TCI ~ 1.63). The analysis reveals a bifurcation in network utility: while the network exhibits robust velocity growth of +15.44% during normal regimes, this collapses to +6.06% during shock regimes, yielding a statistically significant Net Utility Contraction of -9.39% (p = 0.012). Crucially, Instrumental Variable (IV) tests utilizing Hashrate Variation as a supply-side instrument fail to detect a significant relationship in a linear specification (p=0.196), confirming that the velocity constraint is strictly a regime-switching phenomenon rather than a continuous linear function. Furthermore, we document a "Crypto Multiplier" inversion: high friction correlates with a +8.03% increase in capital concentration per entity, suggesting that congestion forces a substitution from active velocity to speculative hoarding.
Crypto enthusiasts claim that buying and holding crypto assets yields high returns, often citing Bitcoin's past performance to promote other tokens and fuel fear of missing out. However, understanding the real risk-return trade-off and what factors affect future crypto returns is crucial as crypto becomes increasingly accessible to retail investors through major brokerages. We examine the HODL strategy through two independent analyses. First, we implement 480 million Monte Carlo simulations across 378 non-stablecoin crypto assets, net of trading fees and the opportunity cost of 1-month Treasury bills, and find strong evidence of survivorship bias and extreme downside concentration. At the 2-3 year horizon, the median excess return is -28.4 percent, the 1 percent conditional value at risk indicates that tail scenarios wipe out principal after all costs, and only the top quartile achieves very large gains, with a mean excess return of 1,326.7 percent. These results challenge the HODL narrative: across a broad set of assets, simple buy-and-hold loads extreme downside risk onto most investors, and the miracles mostly belong to the luckiest quarter. Second, using a Bayesian multi-horizon local projection framework, we find that endogenous predictors based on realized risk-return metrics have economically negligible and unstable effects, while macro-finance factors, especially the 24-week exponential moving average of the Fear and Greed Index, display persistent long-horizon impacts and high cross-basket stability. Where significant, a one-standard-deviation sentiment shock reduces forward top-quartile mean excess returns by 15-22 percentage points and median returns by 6-10 percentage points over 1-3 year horizons, suggesting that macro-sentiment conditions, rather than realized return histories, are the dominant indicators for future outcomes.
This survey paper provides a structured overview of recent research on integrating Large Language Models (LLMs) into financial investments and market analysis, categorizing diverse contributions into four frameworks. It reviews LLM applications across tasks like stock selection, risk assessment, and trading, while identifying current capabilities and future research directions in this rapidly evolving field.
Researchers from Georgia Institute of Technology and collaborators developed the World Central Banks (WCB) dataset, the largest monetary policy corpus comprising over 380,000 sentences from 25 central banks, with 25,000 human-annotated for stance, temporality, and uncertainty. Their framework demonstrates that models trained on this aggregated dataset achieve superior performance (e.g., RoBERTa-Large with 0.740 F1 for stance detection) compared to bank-specific models and shows the derived hawkishness measure tracks inflation trends.
7
This research systematically evaluates GPT-4o's memorization of economic and financial data, revealing that its apparent forecasting ability for historical periods often stems from recalling training data rather than genuine prediction. The model achieved near-perfect accuracy for pre-knowledge cutoff data, but its performance declined significantly to random levels for post-cutoff information, demonstrating the ineffectiveness of common mitigation strategies like explicit instructions or data masking.
This research explores the capabilities of large language models as trading agents in simulated financial markets. It demonstrates that LLMs can effectively execute diverse trading strategies and influence market dynamics, exhibiting behaviors such as price convergence and liquidity provision, though with an observed asymmetry in correcting undervaluation versus overvaluation.
The paper introduces Data-Centric Automatic R&D (D-CARD) to formalize the automation of data-intensive research processes and presents RD²Bench, the first comprehensive benchmark for evaluating large language models (LLMs) on this task. Experiments show state-of-the-art LLMs can perform basic method extraction and implementation but struggle with precision, domain-specific knowledge, and consistency on complex R&D tasks.
Subgraph representation learning is a technique for analyzing local structures (or shapes) within complex networks. Enabled by recent developments in scalable Graph Neural Networks (GNNs), this approach encodes relational information at a subgroup level (multiple connected nodes) rather than at a node level of abstraction. We posit that certain domain applications, such as anti-money laundering (AML), are inherently subgraph problems and mainstream graph techniques have been operating at a suboptimal level of abstraction. This is due in part to the scarcity of annotated datasets of real-world size and complexity, as well as the lack of software tools for managing subgraph GNN workflows at scale. To enable work in fundamental algorithms as well as domain applications in AML and beyond, we introduce Elliptic2, a large graph dataset containing 122K labeled subgraphs of Bitcoin clusters within a background graph consisting of 49M node clusters and 196M edge transactions. The dataset provides subgraphs known to be linked to illicit activity for learning the set of "shapes" that money laundering exhibits in cryptocurrency and accurately classifying new criminal activity. Along with the dataset we share our graph techniques, software tooling, promising early experimental results, and new domain insights already gleaned from this approach. Taken together, we find immediate practical value in this approach and the potential for a new standard in anti-money laundering and forensic analytics in cryptocurrencies and other financial networks.
17
Generative AI tools such as ChatGPT can fundamentally change the way investors process information. We probe the economic usefulness of these tools in summarizing complex corporate disclosures using the stock market as a laboratory. The unconstrained summaries are remarkably shorter compared to the originals, whereas their information content is amplified. When a document has a positive (negative) sentiment, its summary becomes more positive (negative). Importantly, the summaries are more effective at explaining stock market reactions to the disclosed information. Motivated by these findings, we propose a measure of information ``bloat." We show that bloated disclosure is associated with adverse capital market consequences, such as lower price efficiency and higher information asymmetry. Finally, we show that the model is effective at constructing targeted summaries that identify firms' (non-)financial performance. Collectively, our results indicate that generative AI adds considerable value for investors with information processing constraints.
We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community.
The Nelson-Siegel framework is employed to model the term structure of commodity futures prices. Exploiting the information embedded in the level, slope and curvature parameters, we develop novel investment strategies that assume short-term continuation of recent parallel, slope or butterfly movements of futures curves. Systematic strategies based on the change in the slope generate significant profits that are unrelated to previously documented risk factors and can survive reasonable transaction costs. Further analysis demonstrates that the profitability of the slope strategy increases with investor sentiment and is in part a compensation for the drawdowns incurred during economic slowdowns. The profitability can also be magnified through timing and persists under alternative specifications of the Nelson-Siegel model.
Perpetual futures are the most popular cryptocurrency derivatives. Perpetuals offer leveraged exposure to their underlying without rollover or direct ownership. Unlike fixed-maturity futures, perpetuals are not guaranteed to converge to the spot price. To minimize the gap between perpetual and spot prices, long investors periodically pay shorts a funding rate proportional to this difference. We derive no-arbitrage prices for perpetual futures in frictionless markets and bounds in markets with trading costs. Empirically, deviations from these prices in crypto are larger than in traditional currency markets, comove across currencies, and diminish over time. An implied arbitrage strategy yields high Sharpe ratios.
Reinforcement learning (RL) is a subfield of machine learning that has been used in many fields, such as robotics, gaming, and autonomous systems. There has been growing interest in using RL for quantitative trading, where the goal is to make trades that generate profits in financial markets. This paper presents the use of RL for quantitative trading and reports a case study based on an RL-based trading algorithm. The results show that RL can be a useful tool for quantitative trading and can perform better than traditional trading algorithms. The use of reinforcement learning for quantitative trading is a promising area of research that can help develop more sophisticated and efficient trading systems. Future research can explore the use of other reinforcement learning techniques, the use of other data sources, and the testing of the system on a range of asset classes. Together, our work shows the potential in the use of reinforcement learning for quantitative trading and the need for further research and development in this area. By developing the sophistication and efficiency of trading systems, it may be possible to make financial markets more efficient and generate higher returns for investors.
7
Uniswap is a Constant Product Market Maker built around liquidity pools, where pairs of tokens are exchanged subject to a fee that is proportional to the size of transactions. At the time of writing, there exist more than 6,000 pools associated with Uniswap v3, implying that empirical investigations on the full ecosystem can easily become computationally expensive. Thus, we propose a systematic workflow to extract and analyse a meaningful but computationally tractable sub-universe of liquidity pools. Leveraging on the 34 pools found relevant for the six-months time window January-June 2022, we then investigate the related liquidity consumption behaviour of market participants. We propose to represent each liquidity taker by a suitably constructed transaction graph, which is a fully connected network where nodes are the liquidity taker's executed transactions, and edges contain weights encoding the time elapsed between any two transactions. We extend the NLP-inspired graph2vec algorithm to the weighted undirected setting, and employ it to obtain an embedding of the set of graphs. This embedding allows us to extract seven clusters of liquidity takers, with equivalent behavioural patters and interpretable trading preferences. We conclude our work by testing for relationships between the characteristic mechanisms of each pool, i.e. liquidity provision, consumption, and price variation. We introduce a related ideal crypto law, inspired from the ideal gas law of thermodynamics, and demonstrate that pools adhering to this law are healthier trading venues in terms of sensitivity of liquidity and agents' activity. Regulators and practitioners could benefit from our model by developing related pool health monitoring tools.
Uniswap is a decentralized exchange (DEX) and was first launched on November 2, 2018 on the Ethereum mainnet [1] and is part of an Ecosystem of products in Decentralized Finance (DeFi). It replaces a traditional order book type of trading common on centralized exchanges (CEX) with a deterministic model that swaps currencies (or tokens/assets) along a fixed price function determined by the amount of currencies supplied by the liquidity providers. Liquidity providers can be regarded as investors in the decentralized exchange and earn fixed commissions per trade. They lock up funds in liquidity pools for distinct pairs of currencies allowing market participants to swap them using the fixed price function. Liquidity providers take on market risk as a liquidity provider in exchange for earning commissions on each trade. Here we analyze the risk profile of a liquidity provider and the so called impermanent (unrealized) loss in particular. We provide an improved version of the commonly denoted impermanent loss function for Uniswap v2 on the semi-infinite domain. The differences between Uniswap v2 and v3 are also discussed.
Microsoft Research developed Qlib, an open-source platform designed for AI-driven quantitative investment, integrating the entire workflow from data processing to strategy execution. The platform provides tools to leverage machine learning for financial forecasting and portfolio management, demonstrating up to 100x faster data retrieval than traditional databases for time series tasks.
16,588
This survey paper systematically reviews current applications of large language models (LLMs) in the finance industry, categorizing existing solutions and detailing their performance. It provides a practical, multi-level decision framework to guide financial professionals in the strategic adoption of LLMs, considering factors from cost and data privacy to computational resources.
We establish the existence of anomalous excess returns based on trend following strategies across four asset classes (commodities, currencies, stock indices, bonds) and over very long time scales. We use for our studies both futures time series, that exist since 1960, and spot time series that allow us to go back to 1800 on commodities and indices. The overall t-stat of the excess returns is 5\approx 5 since 1960 and 10\approx 10 since 1800, after accounting for the overall upward drift of these markets. The effect is very stable, both across time and asset classes. It makes the existence of trends one of the most statistically significant anomalies in financial markets. When analyzing the trend following signal further, we find a clear saturation effect for large signals, suggesting that fundamentalist traders do not attempt to resist "weak trends", but step in when their own signal becomes strong enough. Finally, we study the performance of trend following in the recent period. We find no sign of a statistical degradation of long trends, whereas shorter trends have significantly withered.
The main result of this paper is a collateralized counterparty valuation adjusted pricing equation, which allows to price a deal while taking into account credit and debit valuation adjustments (CVA, DVA) along with margining and funding costs, all in a consistent way. Funding risk breaks the bilateral nature of the valuation formula. We find that the equation has a recursive form, making the introduction of a purely additive funding valuation adjustment (FVA) difficult. Yet, we can cast the pricing equation into a set of iterative relationships which can be solved by means of standard least-square Monte Carlo techniques. As a consequence, we find that identifying funding costs and debit valuation adjustments is not tenable in general, contrary to what has been suggested in the literature in simple cases. The assumptions under which funding costs vanish are a very special case of the more general theory. We define a comprehensive framework that allows us to derive earlier results on funding or counterparty risk as a special case, although our framework is more than the sum of such special cases. We derive the general pricing equation by resorting to a risk-neutral approach where the new types of risks are included by modifying the payout cash flows. We consider realistic settings and include in our models the common market practices suggested by ISDA documentation, without assuming restrictive constraints on margining procedures and close-out netting rules. In particular, we allow for asymmetric collateral and funding rates, and exogenous liquidity policies and hedging strategies. Re-hypothecation liquidity risk and close-out amount evaluation issues are also covered. Finally, relevant examples of non-trivial settings illustrate how to derive known facts about discounting curves from a robust general framework and without resorting to ad hoc hypotheses.
There are no more papers matching your filters at the moment.