CNAM Paris
A Markov Decision Process for Variable Selection in Branch & Bound
Mixed-Integer Linear Programming (MILP) is a powerful framework used to address a wide range of NP-hard combinatorial optimization problems, often solved by Branch and Bound (B&B). A key factor influencing the performance of B&B solvers is the variable selection heuristic governing branching decisions. Recent contributions have sought to adapt reinforcement learning (RL) algorithms to the B&B setting to learn optimal branching policies, through Markov Decision Processes (MDP) inspired formulations, and ad hoc convergence theorems and algorithms. In this work, we introduce BBMDP, a principled vanilla MDP formulation for variable selection in B&B, allowing to leverage a broad range of RL algorithms for the purpose of learning optimal B\&B heuristics. Computational experiments validate our model empirically, as our branching agent outperforms prior state-of-the-art RL agents on four standard MILP benchmarks.
View blog
Resources
Influence branching for learning to solve mixed-integer programs online
On the occasion of the 20th Mixed Integer Program Workshop's computational competition, this work introduces a new approach for learning to solve MIPs online. Influence branching, a new graph-oriented variable selection strategy, is applied throughout the first iterations of the branch and bound algorithm. This branching heuristic is optimized online with Thompson sampling, which ranks the best graph representations of MIP's structure according to computational speed up over SCIP. We achieve results comparable to state of the art online learning methods. Moreover, our results indicate that our method generalizes well to more general online frameworks, where variations in constraint matrix, constraint vector and objective coefficients can all occur and where more samples are available.
View blog
Resources
PKSpell: Data-Driven Pitch Spelling and Key Signature Estimation
27 Jul 2021
We present PKSpell: a data-driven approach for the joint estimation of pitch spelling and key signatures from MIDI files. Both elements are fundamental for the production of a full-fledged musical score and facilitate many MIR tasks such as harmonic analysis, section identification, melodic similarity, and search in a digital music library. We design a deep recurrent neural network model that only requires information readily available in all kinds of MIDI files, including performances, or other symbolic encodings. We release a model trained on the ASAP dataset. Our system can be used with these pre-trained parameters and is easy to integrate into a MIR pipeline. We also propose a data augmentation procedure that helps retraining on small datasets. PKSpell achieves strong key signature estimation performance on a challenging dataset. Most importantly, this model establishes a new state-of-the-art performance on the MuseData pitch spelling dataset without retraining.
View blog
Resources
Web Image Context Extraction with Graph Neural Networks and Sentence Embeddings on the DOM tree
Web Image Context Extraction (WICE) consists in obtaining the textual information describing an image using the content of the surrounding webpage. A common preprocessing step before performing WICE is to render the content of the webpage. When done at a large scale (e.g., for search engine indexation), it may become very computationally costly (up to several seconds per page). To avoid this cost, we introduce a novel WICE approach that combines Graph Neural Networks (GNNs) and Natural Language Processing models. Our method relies on a graph model containing both node types and text as features. The model is fed through several blocks of GNNs to extract the textual context. Since no labeled WICE dataset with ground truth exists, we train and evaluate the GNNs on a proxy task that consists in finding the semantically closest text to the image caption. We then interpret importance weights to find the most relevant text nodes and define them as the image context. Thanks to GNNs, our model is able to encode both structural and semantic information from the webpage. We show that our approach gives promising results to help address the large-scale WICE problem using only HTML data.
View blog
Resources
Non-intrusive reduced order models for partitioned fluid-structure interactions
The main goal of this work is to develop a data-driven Reduced Order Model (ROM) strategy from high-fidelity simulation result data of a Full Order Model (FOM). The goal is to predict at lower computational cost the time evolution of solutions of Fluid-Structure Interaction (FSI) problems. For some FSI applications, the elastic solid FOM (often chosen as quasi-static) can take far more computational time than the fluid one. In this context, for the sake of performance one could only derive a ROM for the structure and try to achieve a partitioned FOM fluid solver coupled with a ROM solid one. In this paper, we present a data-driven partitioned ROM on two study cases: (i) a simplified 1D-1D FSI problem representing an axisymmetric elastic model of an arterial vessel, coupled with an incompressible fluid flow; (ii) an incompressible 2D wake flow over a cylinder facing an elastic solid with two flaps. We evaluate the accuracy and performance of the proposed ROM-FOM strategy on these cases while investigating the effects of the model's hyperparameters. We demonstrate a high prediction accuracy and significant speedup achievements using this strategy.
View blog
Resources
Response Times Parametric Estimation of Real-Time Systems
Real-time systems are a set of programs, a scheduling policy and a system architecture, constrained by timing requirements. Most of daily embedded devices are real-time systems, e.g. airplanes, cars, trains, spatial probes, etc. The time required by a program for its end-to-end execution is called its response time. Usually, upper-bounds of response times are computed in order to provide safe deadline miss probabilities. In this paper, we propose a suited re-parametrization of the inverse Gaussian mixture distribution adapted to response times of real-time systems and the estimation of deadline miss probabilities. The parameters and their associated deadline miss probabilities are estimated with an adapted Expectation-Maximization algorithm.
View blog
Resources
There are no more papers matching your filters at the moment.