The rapid evolution of Large Language Models' has underscored the need for evaluation frameworks that are globally applicable, flexible, and modular, and that support a wide range of tasks, model types, and linguistic settings. We introduce EKA-EVAL, a unified, end- to-end framework that combines a zero-code web interface and an interactive CLI to ensure broad accessibility. It integrates 50+ multilingual benchmarks across nine evaluation categories, supports local and proprietary models, and provides 11 core capabilities through a modular, plug-and-play architecture. Designed for scalable, multilingual evaluation with support for low-resource multilingual languages, EKA-EVAL is, to the best of our knowledge, the first suite to offer comprehensive coverage in a single platform. Comparisons against five existing baselines indicate improvements of at least 2x better on key usability measures, with the highest user satisfaction, faster setup times, and consistent benchmark reproducibility. The framework is open-source and publicly available at this https URL.
The recent surge in the vehicle market has led to an alarming increase in road accidents. This underscores the critical importance of enhancing road safety measures, particularly for vulnerable road users like motorcyclists. Hence, we introduce the rider intention prediction (RIP) competition that aims to address challenges in rider safety by proactively predicting maneuvers before they occur, thereby strengthening rider safety. This capability enables the riders to react to the potential incorrect maneuvers flagged by advanced driver assistance systems (ADAS). We collect a new dataset, namely, rider action anticipation dataset (RAAD) for the competition consisting of two tasks: single-view RIP and multi-view RIP. The dataset incorporates a spectrum of traffic conditions and challenging navigational maneuvers on roads with varying lighting conditions. For the competition, we received seventy-five registrations and five team submissions for inference of which we compared the methods of the top three performing teams on both the RIP tasks: one state-space model (Mamba2) and two learning-based approaches (SVM and CNN-LSTM). The results indicate that the state-space model outperformed the other methods across the entire dataset, providing a balanced performance across maneuver classes. The SVM-based RIP method showed the second-best performance when using random sampling and SMOTE. However, the CNN-LSTM method underperformed, primarily due to class imbalance issues, particularly struggling with minority classes. This paper details the proposed RAAD dataset and provides a summary of the submissions for the RIP 2024 competition.
Clustering large amount of data is becoming increasingly important in the current times. Due to the large sizes of data, clustering algorithm often take too much time. Sampling this data before clustering is commonly used to reduce this time. In this work, we propose a probabilistic sampling technique called cube sampling along with K-Prototype clustering. Cube sampling is used because of its accurate sample selection. K-Prototype is most frequently used clustering algorithm when the data is numerical as well as categorical (very common in today's time). The novelty of this work is in obtaining the crucial inclusion probabilities for cube sampling using Principal Component Analysis (PCA). Experiments on multiple datasets from the UCI repository demonstrate that cube sampled K-Prototype algorithm gives the best clustering accuracy among similarly sampled other popular clustering algorithms (K-Means, Hierarchical Clustering (HC), Spectral Clustering (SC)). When compared with unsampled K-Prototype, K-Means, HC and SC, it still has the best accuracy with the added advantage of reduced computational complexity (due to reduced data size).
Concrete manufacturing projects are one of the most common ones for consulting agencies. Because of the highly non-linear dependency of input materials like ash, water, cement, superplastic, etc; with the resultant strength of concrete, it gets difficult for machine learning models to successfully capture this relation and perform cost optimizations. This paper highlights how PINNs (Physics Informed Neural Networks) can be useful in the given situation. This state-of-the-art model shall also get compared with traditional models like Linear Regression, Random Forest, Gradient Boosting, and Deep Neural Network. Results of the research highlights how well PINNs performed even with reduced dataset, thus resolving one of the biggest issues of limited data availability for ML models. On an average, PINN got the loss value reduced by 26.3% even with 40% lesser data compared to the Deep Neural Network. In addition to predicting strength of the concrete given the quantity of raw materials, the paper also highlights the use of heuristic optimization method like Particle Swarm Optimization (PSO) in predicting quantity of raw materials required to manufacture concrete of given strength with least cost.
There are no more papers matching your filters at the moment.