NTIS – New Technologies for the Information Society
Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task that focuses on understanding opinions at the aspect level, including sentiment towards specific aspect terms, categories, and opinions. While ABSA research has seen significant progress, much of the focus has been on monolingual settings. Cross-lingual ABSA, which aims to transfer knowledge from resource-rich languages (such as English) to low-resource languages, remains an under-explored area, with no systematic review of the field. This paper aims to fill that gap by providing a comprehensive survey of cross-lingual ABSA. We summarize key ABSA tasks, including aspect term extraction, aspect sentiment classification, and compound tasks involving multiple sentiment elements. Additionally, we review the datasets, modelling paradigms, and cross-lingual transfer methods used to solve these tasks. We also examine how existing work in monolingual and multilingual ABSA, as well as ABSA with LLMs, contributes to the development of cross-lingual ABSA. Finally, we highlight the main challenges and suggest directions for future research to advance cross-lingual ABSA systems.
Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task that aims to identify sentiment toward specific aspects of an entity. While large language models (LLMs) have shown strong performance in various natural language processing (NLP) tasks, their capabilities for Czech ABSA remain largely unexplored. In this work, we conduct a comprehensive evaluation of 19 LLMs of varying sizes and architectures on Czech ABSA, comparing their performance in zero-shot, few-shot, and fine-tuning scenarios. Our results show that small domain-specific models fine-tuned for ABSA outperform general-purpose LLMs in zero-shot and few-shot settings, while fine-tuned LLMs achieve state-of-the-art results. We analyze how factors such as multilingualism, model size, and recency influence performance and present an error analysis highlighting key challenges, particularly in aspect term prediction. Our findings provide insights into the suitability of LLMs for Czech ABSA and offer guidance for future research in this area.
While large language models (LLMs) show promise for various tasks, their performance in compound aspect-based sentiment analysis (ABSA) tasks lags behind fine-tuned models. However, the potential of LLMs fine-tuned for ABSA remains unexplored. This paper examines the capabilities of open-source LLMs fine-tuned for ABSA, focusing on LLaMA-based models. We evaluate the performance across four tasks and eight English datasets, finding that the fine-tuned Orca~2 model surpasses state-of-the-art results in all tasks. However, all models struggle in zero-shot and few-shot scenarios compared to fully fine-tuned ones. Additionally, we conduct error analysis to identify challenges faced by fine-tuned models.
Aspect-based sentiment analysis (ABSA) has received substantial attention in English, yet challenges remain for low-resource languages due to the scarcity of labelled data. Current cross-lingual ABSA approaches often rely on external translation tools and overlook the potential benefits of incorporating a small number of target language examples into training. In this paper, we evaluate the effect of adding few-shot target language examples to the training set across four ABSA tasks, six target languages, and two sequence-to-sequence models. We show that adding as few as ten target language examples significantly improves performance over zero-shot settings and achieves a similar effect to constrained decoding in reducing prediction errors. Furthermore, we demonstrate that combining 1,000 target language examples with English data can even surpass monolingual baselines. These findings offer practical insights for improving cross-lingual ABSA in low-resource and domain-specific settings, as obtaining ten high-quality annotated examples is both feasible and highly effective.
In this paper, we describe our method for the detection of lexical semantic change, i.e., word sense changes over time. We examine semantic differences between specific words in two corpora, chosen from different time periods, for English, German, Latin, and Swedish. Our method was created for the SemEval 2020 Task 1: \textit{Unsupervised Lexical Semantic Change Detection.} We ranked 1st1^{st} in Sub-task 1: binary change detection, and 4th4^{th} in Sub-task 2: ranked change detection. Our method is fully unsupervised and language independent. It consists of preparing a semantic vector space for each corpus, earlier and later; computing a linear transformation between earlier and later spaces, using Canonical Correlation Analysis and Orthogonal Transformation; and measuring the cosines between the transformed vector for the target word from the earlier corpus and the vector for the target word in the later corpus.
In this paper, we experimented with the SpeechT5 model pre-trained on large-scale datasets. We pre-trained the foundation model from scratch and fine-tuned it on a large-scale robust multi-speaker text-to-speech (TTS) task. We tested the model capabilities in a zero- and few-shot scenario. Based on two listening tests, we evaluated the synthetic audio quality and the similarity of how synthetic voices resemble real voices. Our results showed that the SpeechT5 model can generate a synthetic voice for any speaker using only one minute of the target speaker's data. We successfully demonstrated the high quality and similarity of our synthetic voices on publicly known Czech politicians and celebrities.
Cross-lingual aspect-based sentiment analysis (ABSA) involves detailed sentiment analysis in a target language by transferring knowledge from a source language with available annotated data. Most existing methods depend heavily on often unreliable translation tools to bridge the language gap. In this paper, we propose a new approach that leverages a large language model (LLM) to generate high-quality pseudo-labelled data in the target language without the need for translation tools. First, the framework trains an ABSA model to obtain predictions for unlabelled target language data. Next, LLM is prompted to generate natural sentences that better represent these noisy predictions than the original text. The ABSA model is then further fine-tuned on the resulting pseudo-labelled dataset. We demonstrate the effectiveness of this method across six languages and five backbone models, surpassing previous state-of-the-art translation-based approaches. The proposed framework also supports generative models, and we show that fine-tuned LLMs outperform smaller multilingual models.
Aspect-based sentiment analysis (ABSA) has made significant strides, yet challenges remain for low-resource languages due to the predominant focus on English. Current cross-lingual ABSA studies often centre on simpler tasks and rely heavily on external translation tools. In this paper, we present a novel sequence-to-sequence method for compound ABSA tasks that eliminates the need for such tools. Our approach, which uses constrained decoding, improves cross-lingual ABSA performance by up to 10\%. This method broadens the scope of cross-lingual ABSA, enabling it to handle more complex tasks and providing a practical, efficient alternative to translation-dependent techniques. Furthermore, we compare our approach with large language models (LLMs) and show that while fine-tuned multilingual LLMs can achieve comparable results, English-centric LLMs struggle with these tasks.
This paper presents a series of approaches aimed at enhancing the performance of Aspect-Based Sentiment Analysis (ABSA) by utilizing extracted semantic information from a Semantic Role Labeling (SRL) model. We propose a novel end-to-end Semantic Role Labeling model that effectively captures most of the structured semantic information within the Transformer hidden state. We believe that this end-to-end model is well-suited for our newly proposed models that incorporate semantic information. We evaluate the proposed models in two languages, English and Czech, employing ELECTRA-small models. Our combined models improve ABSA performance in both languages. Moreover, we achieved new state-of-the-art results on the Czech ABSA.
In this paper, we introduce a novel Czech dataset for aspect-based sentiment analysis (ABSA), which consists of 3.1K manually annotated reviews from the restaurant domain. The dataset is built upon the older Czech dataset, which contained only separate labels for the basic ABSA tasks such as aspect term extraction or aspect polarity detection. Unlike its predecessor, our new dataset is specifically designed for more complex tasks, e.g. target-aspect-category detection. These advanced tasks require a unified annotation format, seamlessly linking sentiment elements (labels) together. Our dataset follows the format of the well-known SemEval-2016 datasets. This design choice allows effortless application and evaluation in cross-lingual scenarios, ultimately fostering cross-language comparisons with equivalent counterpart datasets in other languages. The annotation process engaged two trained annotators, yielding an impressive inter-annotator agreement rate of approximately 90%. Additionally, we provide 24M reviews without annotations suitable for unsupervised learning. We present robust monolingual baseline results achieved with various Transformer-based models and insightful error analysis to supplement our contributions. Our code and dataset are freely available for non-commercial research purposes.
While aspect-based sentiment analysis (ABSA) has made substantial progress, challenges remain for low-resource languages, which are often overlooked in favour of English. Current cross-lingual ABSA approaches focus on limited, less complex tasks and often rely on external translation tools. This paper introduces a novel approach using constrained decoding with sequence-to-sequence models, eliminating the need for unreliable translation tools and improving cross-lingual performance by 5\% on average for the most complex task. The proposed method also supports multi-tasking, which enables solving multiple ABSA tasks with a single model, with constrained decoding boosting results by more than 10\%. We evaluate our approach across seven languages and six ABSA tasks, surpassing state-of-the-art methods and setting new benchmarks for previously unexplored tasks. Additionally, we assess large language models (LLMs) in zero-shot, few-shot, and fine-tuning scenarios. While LLMs perform poorly in zero-shot and few-shot settings, fine-tuning achieves competitive results compared to smaller multilingual models, albeit at the cost of longer training and inference times. We provide practical recommendations for real-world applications, enhancing the understanding of cross-lingual ABSA methodologies. This study offers valuable insights into the strengths and limitations of cross-lingual ABSA approaches, advancing the state-of-the-art in this challenging research domain.
Text summarization is the task of shortening a larger body of text into a concise version while retaining its essential meaning and key information. While summarization has been significantly explored in English and other high-resource languages, Czech text summarization, particularly for historical documents, remains underexplored due to linguistic complexities and a scarcity of annotated datasets. Large language models such as Mistral and mT5 have demonstrated excellent results on many natural language processing tasks and languages. Therefore, we employ these models for Czech summarization, resulting in two key contributions: (1) achieving new state-of-the-art results on the modern Czech summarization dataset SumeCzech using these advanced models, and (2) introducing a novel dataset called Posel od Čerchova for summarization of historical Czech documents with baseline results. Together, these contributions provide a great potential for advancing Czech text summarization and open new avenues for research in Czech historical text processing.
This paper introduces the first prompt-based methods for aspect-based sentiment analysis and sentiment classification in Czech. We employ the sequence-to-sequence models to solve the aspect-based tasks simultaneously and demonstrate the superiority of our prompt-based approach over traditional fine-tuning. In addition, we conduct zero-shot and few-shot learning experiments for sentiment classification and show that prompting yields significantly better results with limited training examples compared to traditional fine-tuning. We also demonstrate that pre-training on data from the target domain can lead to significant improvements in a zero-shot scenario.
This paper deals with cross-lingual sentiment analysis in Czech, English and French languages. We perform zero-shot cross-lingual classification using five linear transformations combined with LSTM and CNN based classifiers. We compare the performance of the individual transformations, and in addition, we confront the transformation-based approach with existing state-of-the-art BERT-like models. We show that the pre-trained embeddings from the target domain are crucial to improving the cross-lingual classification results, unlike in the monolingual classification, where the effect is not so distinctive.
This paper describes a novel dataset consisting of sentences with semantic similarity annotations. The data originate from the journalistic domain in the Czech language. We describe the process of collecting and annotating the data in detail. The dataset contains 138,556 human annotations divided into train and test sets. In total, 485 journalism students participated in the creation process. To increase the reliability of the test set, we compute the annotation as an average of 9 individual annotations. We evaluate the quality of the dataset by measuring inter and intra annotation annotators' agreements. Beside agreement numbers, we provide detailed statistics of the collected dataset. We conclude our paper with a baseline experiment of building a system for predicting the semantic similarity of sentences. Due to the massive number of training annotations (116 956), the model can perform significantly better than an average annotator (0,92 versus 0,86 of Person's correlation coefficients).
This work proposes a new pipeline for leveraging data collected on the Stack Overflow website for pre-training a multimodal model for searching duplicates on question answering websites. Our multimodal model is trained on question descriptions and source codes in multiple programming languages. We design two new learning objectives to improve duplicate detection capabilities. The result of this work is a mature, fine-tuned Multimodal Question Duplicity Detection (MQDD) model, ready to be integrated into a Stack Overflow search system, where it can help users find answers for already answered questions. Alongside the MQDD model, we release two datasets related to the software engineering domain. The first Stack Overflow Dataset (SOD) represents a massive corpus of paired questions and answers. The second Stack Overflow Duplicity Dataset (SODD) contains data for training duplicate detection models.
There are no more papers matching your filters at the moment.