Contemporary Amperex Technology Co. Limited
To bridge the ever increasing gap between deep neural networks' complexity and hardware capability, network quantization has attracted more and more research attention. The latest trend of mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization. However, this also results in a difficult integer programming formulation, and forces most existing approaches to use an extremely time-consuming search process even with various relaxations. Instead of solving a problem of the original integer programming, we propose to optimize a proxy metric, the concept of network orthogonality, which is highly correlated with the loss of the integer programming but also easy to optimize with linear programming. This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy. Specifically, we achieve 72.08% Top-1 accuracy on ResNet-18 with 6.7Mb, which does not require any searching iterations. Given the high efficiency and low data dependency of our algorithm, we used it for the post-training quantization, which achieve 71.27% Top-1 accuracy on MobileNetV2 with only 1.5Mb. Our code is available at this https URL.
Prompt tuning is a parameter-efficient way to deploy large-scale pre-trained models to downstream tasks by adding task-specific tokens. In terms of vision-language pre-trained (VLP) models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks, which greatly exacerbates the already high computational overhead. In this paper, we revisit the principle of prompt tuning for Transformer-based VLP models, and reveal that the impact of soft prompt tokens can be actually approximated via independent information diffusion steps, thereby avoiding the expensive global attention modeling and reducing the computational complexity to a large extent. Based on this finding, we propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning. To validate APT, we apply it to two representative VLP models, namely ViLT and METER, and conduct extensive experiments on a bunch of downstream tasks. Meanwhile, the generalization of APT is also validated on CLIP for image classification and StableDiffusion for text-to-image generation. The experimental results not only show the superior performance gains and computation efficiency of APT against the conventional prompt tuning methods, e.g., +7.01% accuracy and -82.30% additional computation overhead on METER, but also confirm its merits over other parameter-efficient transfer learning approaches.
Existing camouflaged object detection~(COD) methods depend heavily on large-scale pixel-level annotations.However, acquiring such annotations is laborious due to the inherent camouflage characteristics of the objects.Semi-supervised learning offers a promising solution to this challenge.Yet, its application in COD is hindered by significant pseudo-label noise, both pixel-level and instance-level.We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning~(DRCL) to effectively address these noise issues.Specifically, DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.First, it employs Pixel-wise Consistency Learning~(PCL) to deal with pixel-level noise by reweighting the different parts within the pseudo-label.Second, Instance-wise Consistency Learning~(ICL) is used to adjust weights for pseudo-labels, which handles instance-level noise.Extensive experiments on four COD benchmark datasets demonstrate that the proposed CamoTeacher not only achieves state-of-the-art compared with semi-supervised learning methods, but also rivals established fully-supervised learning methods.Our code will be available soon.
·
Multi-label image classification, which can be categorized into label-dependency and region-based methods, is a challenging problem due to the complex underlying object layouts. Although region-based methods are less likely to encounter issues with model generalizability than label-dependency methods, they often generate hundreds of meaningless or noisy proposals with non-discriminative information, and the contextual dependency among the localized regions is often ignored or over-simplified. This paper builds a unified framework to perform effective noisy-proposal suppression and to interact between global and local features for robust feature learning. Specifically, we propose category-aware weak supervision to concentrate on non-existent categories so as to provide deterministic information for local feature learning, restricting the local branch to focus on more high-quality regions of interest. Moreover, we develop a cross-granularity attention module to explore the complementary information between global and local features, which can build the high-order feature correlation containing not only global-to-local, but also local-to-local relations. Both advantages guarantee a boost in the performance of the whole network. Extensive experiments on two large-scale datasets (MS-COCO and VOC 2007) demonstrate that our framework achieves superior performance over state-of-the-art methods.
Semi-Supervised Instance Segmentation (SSIS) aims to leverage an amount of unlabeled data during training. Previous frameworks primarily utilized the RGB information of unlabeled images to generate pseudo-labels. However, such a mechanism often introduces unstable noise, as a single instance can display multiple RGB values. To overcome this limitation, we introduce a Depth-Guided (DG) SSIS framework. This framework uses depth maps extracted from input images, which represent individual instances with closely associated distance values, offering precise contours for distinct instances. Unlike RGB data, depth maps provide a unique perspective, making their integration into the SSIS process complex. To this end, we propose Depth Feature Fusion, which integrates features extracted from depth estimation. This integration allows the model to understand depth information better and ensure its effective utilization. Additionally, to manage the variability of depth images during training, we introduce the Depth Controller. This component enables adaptive adjustments of the depth map, enhancing convergence speed and dynamically balancing the loss weights between RGB and depth maps. Extensive experiments conducted on the COCO and Cityscapes datasets validate the efficacy of our proposed method. Our approach establishes a new benchmark for SSIS, outperforming previous methods. Specifically, our DG achieves 22.29%, 31.47%, and 35.14% mAP for 1%, 5%, and 10% labeled data on the COCO dataset, respectively.
1
Text-based person retrieval (TPR) is a challenging task that involves retrieving a specific individual based on a textual description. Despite considerable efforts to bridge the gap between vision and language, the significant differences between these modalities continue to pose a challenge. Previous methods have attempted to align text and image samples in a modal-shared space, but they face uncertainties in optimization directions due to the movable features of both modalities and the failure to account for one-to-many relationships of image-text pairs in TPR datasets. To address this issue, we propose an effective bi-directional one-to-many embedding paradigm that offers a clear optimization direction for each sample, thus mitigating the optimization problem. Additionally, this embedding scheme generates multiple features for each sample without introducing trainable parameters, making it easier to align with several positive samples. Based on this paradigm, we propose a novel Bi-directional one-to-many Embedding Alignment (Beat) model to address the TPR task. Our experimental results demonstrate that the proposed Beat model achieves state-of-the-art performance on three popular TPR datasets, including CUHK-PEDES (65.61 R@1), ICFG-PEDES (58.25 R@1), and RSTPReID (48.10 R@1). Furthermore, additional experiments on MS-COCO, CUB, and Flowers datasets further demonstrate the potential of Beat to be applied to other image-text retrieval tasks.
In the realm of unsupervised image outlier detection, assigning outlier scores holds greater significance than its subsequent task: thresholding for predicting labels. This is because determining the optimal threshold on non-separable outlier score functions is an ill-posed problem. However, the lack of predicted labels not only hiders some real applications of current outlier detectors but also causes these methods not to be enhanced by leveraging the dataset's self-supervision. To advance existing scoring methods, we propose a multiple thresholding (Multi-T) module. It generates two thresholds that isolate inliers and outliers from the unlabelled target dataset, whereas outliers are employed to obtain better feature representation while inliers provide an uncontaminated manifold. Extensive experiments verify that Multi-T can significantly improve proposed outlier scoring methods. Moreover, Multi-T contributes to a naive distance-based method being state-of-the-art.
1
Highly automated assembly lines enable significant productivity gains in the manufacturing industry, particularly in mass production condition. Nonetheless, challenges persist in job scheduling for make-to-job and mass customization, necessitating further investigation to improve efficiency, reduce tardiness, promote safety and reliability. In this contribution, an advantage actor-critic based reinforcement learning method is proposed to address scheduling problems of distributed flexible assembly lines in a real-time manner. To enhance the performance, a more condensed environment representation approach is proposed, which is designed to work with the masks made by priority dispatching rules to generate fixed and advantageous action space. Moreover, a Monte-Carlo tree search based soft shielding component is developed to help address long-sequence dependent unsafe behaviors and monitor the risk of overdue scheduling. Finally, the proposed algorithm and its soft shielding component are validated in performance evaluation.
There are no more papers matching your filters at the moment.