Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable
abilities in complex reasoning tasks by scaling test-time compute and
exhibiting human-like deep thinking. However, we identify a phenomenon we term
underthinking, where o1-like LLMs frequently switch between different reasoning
thoughts without sufficiently exploring promising paths to reach a correct
solution. This behavior leads to inadequate depth of reasoning and decreased
performance, particularly on challenging mathematical problems. To
systematically analyze this issue, we conduct experiments on three challenging
test sets and two representative open-source o1-like models, revealing that
frequent thought switching correlates with incorrect responses. We introduce a
novel metric to quantify underthinking by measuring token efficiency in
incorrect answers. To address underthinking, we propose a decoding strategy
with thought switching penalty TIP that discourages premature transitions
between thoughts, encouraging deeper exploration of each reasoning path.
Experimental results demonstrate that our approach improves accuracy across
challenging datasets without requiring model fine-tuning. Our findings
contribute to understanding reasoning inefficiencies in o1-like LLMs and offer
a practical solution to enhance their problem-solving capabilities.