digital-forensics
Researchers from City University of Hong Kong, Fudan University, and The Chinese University of Hong Kong, Shenzhen developed SDAIE, a self-supervised framework that detects AI-generated images by learning camera-intrinsic features from photographic EXIF metadata. This method demonstrates superior generalization across diverse generative models and strong robustness to image perturbations, outperforming prior approaches.
Facial retouching to beautify images is widely spread in social media, advertisements, and it is even applied in professional photo studios to let individuals appear younger, remove wrinkles and skin impurities. Generally speaking, this is done to enhance beauty. This is not a problem itself, but when retouched images are used as biometric samples and enrolled in a biometric system, it is one. Since previous work has proven facial retouching to be a challenge for face recognition systems,the detection of facial retouching becomes increasingly necessary. This work proposes to study and analyze changes in beauty assessment algorithms of retouched images, assesses different feature extraction methods based on artificial intelligence in order to improve retouching detection, and evaluates whether face beauty can be exploited to enhance the detection rate. In a scenario where the attacking retouching algorithm is unknown, this work achieved 1.1% D-EER on single image detection.
The rise of generative AI has enabled the production of high-fidelity synthetic tabular data across fields such as healthcare, finance, and public policy, raising growing concerns about data provenance and misuse. Watermarking offers a promising solution to address these concerns by ensuring the traceability of synthetic data, but existing methods face many limitations: they are computationally expensive due to reliance on large diffusion models, struggle with mixed discrete-continuous data, or lack robustness to post-modifications. To address them, we propose TAB-DRW, an efficient and robust post-editing watermarking scheme for generative tabular data. TAB-DRW embeds watermark signals in the frequency domain: it normalizes heterogeneous features via the Yeo-Johnson transformation and standardization, applies the discrete Fourier transform (DFT), and adjusts the imaginary parts of adaptively selected entries according to precomputed pseudorandom bits. To further enhance robustness and efficiency, we introduce a novel rank-based pseudorandom bit generation method that enables row-wise retrieval without incurring storage overhead. Experiments on five benchmark tabular datasets show that TAB-DRW achieves strong detectability and robustness against common post-processing attacks, while preserving high data fidelity and fully supporting mixed-type features.
Researchers investigate cross-generator image forgery detection, demonstrating that a frozen, vision-only DINOv3 foundation model achieves strong generalization by leveraging global, low-frequency structural inconsistencies between real and fake images. The proposed Fisher-Guided Token Selection (FGTS) framework, built on DINOv3, establishes new state-of-the-art accuracy across multiple benchmarks with minimal supervision.
1
The rapid evolution of generative adversarial networks (GANs) and diffusion models has made synthetic media increasingly realistic, raising societal concerns around misinformation, identity fraud, and digital trust. Existing deepfake detection methods either rely on deep learning, which suffers from poor generalization and vulnerability to distortions, or forensic analysis, which is interpretable but limited against new manipulation techniques. This study proposes a hybrid framework that fuses forensic features, including noise residuals, JPEG compression traces, and frequency-domain descriptors, with deep learning representations from convolutional neural networks (CNNs) and vision transformers (ViTs). Evaluated on benchmark datasets (FaceForensics++, Celeb-DF v2, DFDC), the proposed model consistently outperformed single-method baselines and demonstrated superior performance compared to existing state-of-the-art hybrid approaches, achieving F1-scores of 0.96, 0.82, and 0.77, respectively. Robustness tests demonstrated stable performance under compression (F1 = 0.87 at QF = 50), adversarial perturbations (AUC = 0.84), and unseen manipulations (F1 = 0.79). Importantly, explainability analysis showed that Grad-CAM and forensic heatmaps overlapped with ground-truth manipulated regions in 82 percent of cases, enhancing transparency and user trust. These findings confirm that hybrid approaches provide a balanced solution, combining the adaptability of deep models with the interpretability of forensic cues, to develop resilient and trustworthy deepfake detection systems.
The rapid rise of photorealistic images produced from Generative Adversarial Networks (GANs) poses a serious challenge for image forensics and industrial systems requiring reliable content authenticity. This paper uses frequency-domain analysis combined with deep learning to solve the problem of distinguishing StyleGAN-generated images from real ones. Specifically, a two-dimensional Discrete Fourier Transform (2D DFT) was applied to transform images into the Fourier domain, where subtle periodic artifacts become detectable. A ResNet50 neural network is trained on these transformed images to differentiate between real and synthetic ones. The experiments demonstrate that the frequency-domain model achieves a 92.8 percent and an AUC of 0.95, significantly outperforming the equivalent model trained on raw spatial-domain images. These results indicate that the GAN-generated images have unique frequency-domain signatures or "fingerprints". The method proposed highlights the industrial potential of combining signal processing techniques and deep learning to enhance digital forensics and strengthen the trustworthiness of industrial AI systems.
Regulatory limits on explicit targeting have not eliminated algorithmic profiling on the Web, as optimisation systems still adapt ad delivery to users' private attributes. The widespread availability of powerful zero-shot multimodal Large Language Models (LLMs) has dramatically lowered the barrier for exploiting these latent signals for adversarial inference. We investigate this emerging societal risk, specifically how adversaries can now exploit these signals to reverse-engineer private attributes from ad exposure alone. We introduce a novel pipeline that leverages LLMs as adversarial inference engines to perform natural language profiling. Applying this method to a longitudinal dataset comprising over 435,000 ad impressions collected from 891 users, we conducted a large-scale study to assess the feasibility and precision of inferring private attributes from passive online ad observations. Our results demonstrate that off-the-shelf LLMs can accurately reconstruct complex user private attributes, including party preference, employment status, and education level, consistently outperforming strong census-based priors and matching or exceeding human social perception, while operating at only a fraction of the cost (223×\times lower) and time (52×\times faster) required by humans. Critically, actionable profiling is feasible even within short observation windows, indicating that prolonged tracking is not a prerequisite for a successful attack. These findings provide the first empirical evidence that ad streams serve as a high-fidelity digital footprint, enabling off-platform profiling that inherently bypasses current platform safeguards, highlighting a systemic vulnerability in the ad ecosystem and the urgent need for responsible web AI governance in the generative AI era. The code is available at this https URL.
1
Recent advancements in Large Language Models (LLMs) and their increased accessibility have made it easier than ever for students to automatically generate texts, posing new challenges for educational institutions. To enforce norms of academic integrity and ensure students' learning, learning analytics methods to automatically detect LLM-generated text appear increasingly appealing. This paper benchmarks the performance of different state-of-the-art detectors in educational contexts, introducing a novel dataset, called Generative Essay Detection in Education (GEDE), containing over 900 student-written essays and over 12,500 LLM-generated essays from various domains. To capture the diversity of LLM usage practices in generating text, we propose the concept of contribution levels, representing students' contribution to a given assignment. These levels range from purely human-written texts, to slightly LLM-improved versions, to fully LLM-generated texts, and finally to active attacks on the detector by "humanizing" generated texts. We show that most detectors struggle to accurately classify texts of intermediate student contribution levels, like LLM-improved human-written texts. Detectors are particularly likely to produce false positives, which is problematic in educational settings where false suspicions can severely impact students' lives. Our dataset, code, and additional supplementary materials are publicly available at this https URL.
3
StealthInk introduces a multi-bit watermarking scheme for Large Language Models that embeds provenance information into AI-generated text. It achieves provable statistical stealthiness, showing negligible text quality degradation and strong resistance to spoofing attacks, while maintaining high watermark detectability (e.g., 0.9780 AUC for 24 bits in 200 tokens).
2
Shenzhen University researchers systematically identify "latent prior bias" as a fundamental vulnerability in AIGC detectors, where models overfit to characteristics from initial noise vectors rather than robust generative artifacts, developing On-Manifold Adversarial Training (OMAT) that uses white-box optimization of latent noise to create "on-manifold adversarial examples" that remain visually coherent while fooling detectors, achieving state-of-the-art generalization with 94.63% average accuracy on GenImage (+15.43% improvement) and 96.78% on their new GenImage++ benchmark featuring advanced models like FLUX.1 and SD3, while introducing the first systematic framework for understanding why current detectors fail to generalize across different generative architectures.
Digital technology has made possible unimaginable applications come true. It seems exciting to have a handful of tools for easy editing and manipulation, but it raises alarming concerns that can propagate as speech clones, duplicates, or maybe deep fakes. Validating the authenticity of a speech is one of the primary problems of digital audio forensics. We propose an approach to distinguish human speech from AI synthesized speech exploiting the Bi-spectral and Cepstral analysis. Higher-order statistics have less correlation for human speech in comparison to a synthesized speech. Also, Cepstral analysis revealed a durable power component in human speech that is missing for a synthesized speech. We integrate both these analyses and propose a machine learning model to detect AI synthesized speech.
The detection of digital face manipulation in video has attracted extensive attention due to the increased risk to public trust. To counteract the malicious usage of such techniques, deep learning-based deepfake detection methods have been developed and have shown impressive results. However, the performance of these detectors is often evaluated using benchmarks that hardly reflect real-world situations. For example, the impact of various video processing operations on detection accuracy has not been systematically assessed. To address this gap, this paper first analyzes numerous real-world influencing factors and typical video processing operations. Then, a more systematic assessment methodology is proposed, which allows for a quantitative evaluation of a detector's robustness under the influence of different processing operations. Moreover, substantial experiments have been carried out on three popular deepfake detectors, which give detailed analyses on the impact of each operation and bring insights to foster future research.
Digital pathology, augmented by artificial intelligence (AI), holds significant promise for improving the workflow of pathologists. However, challenges such as the labor-intensive annotation of whole slide images (WSIs), high computational demands, and trust concerns arising from the absence of uncertainty estimation in predictions hinder the practical application of current AI methodologies in histopathology. To address these issues, we present a novel trustful fully unsupervised multi-level segmentation methodology (TUMLS) for WSIs. TUMLS adopts an autoencoder (AE) as a feature extractor to identify the different tissue types within low-resolution training data. It selects representative patches from each identified group based on an uncertainty measure and then does unsupervised nuclei segmentation in their respective higher-resolution space without using any ML algorithms. Crucially, this solution integrates seamlessly into clinicians workflows, transforming the examination of a whole WSI into a review of concise, interpretable cross-level insights. This integration significantly enhances and accelerates the workflow while ensuring transparency. We evaluated our approach using the UPENN-GBM dataset, where the AE achieved a mean squared error (MSE) of 0.0016. Additionally, nucleus segmentation is assessed on the MoNuSeg dataset, outperforming all unsupervised approaches with an F1 score of 77.46% and a Jaccard score of 63.35%. These results demonstrate the efficacy of TUMLS in advancing the field of digital pathology.
Most existing 3D geometry copy detection research focused on 3D watermarking, which first embeds ``watermarks'' and then detects the added watermarks. However, this kind of methods is non-straightforward and may be less robust to attacks such as cropping and noise. In this paper, we focus on a fundamental and practical research problem: judging whether a point cloud is plagiarized or copied to another point cloud in the presence of several manipulations (e.g., similarity transformation, smoothing). We propose a novel method to address this critical problem. Our key idea is first to align the two point clouds and then calculate their similarity distance. We design three different measures to compute the similarity. We also introduce two strategies to speed up our method. Comprehensive experiments and comparisons demonstrate the effectiveness and robustness of our method in estimating the similarity of two given 3D point clouds.
This paper introduces a sensor steering methodology based on deep reinforcement learning to enhance the predictive accuracy and decision support capabilities of digital twins by optimising the data acquisition process. Traditional sensor placement techniques are often constrained by one-off optimisation strategies, which limit their applicability for online applications requiring continuous informative data assimilation. The proposed approach addresses this limitation by offering an adaptive framework for sensor placement within the digital twin paradigm. The sensor placement problem is formulated as a Markov decision process, enabling the training and deployment of an agent capable of dynamically repositioning sensors in response to the evolving conditions of the physical structure as represented by the digital twin. This ensures that the digital twin maintains a highly representative and reliable connection to its physical counterpart. The proposed framework is validated through a series of comprehensive case studies involving a cantilever plate structure subjected to diverse conditions, including healthy and damaged conditions. The results demonstrate the capability of the deep reinforcement learning agent to adaptively reposition sensors improving the quality of data acquisition and hence enhancing the overall accuracy of digital twins.
Frequent and long-term exposure to hyperglycemia (i.e., high blood glucose) increases the risk of chronic complications such as neuropathy, nephropathy, and cardiovascular disease. Current technologies like continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) primarily model specific aspects of glycemic control-like hypoglycemia prediction or insulin delivery. Similarly, most digital twin approaches in diabetes management simulate only physiological processes. These systems lack the ability to offer alternative treatment scenarios that support proactive behavioral interventions. To address this, we propose GlyTwin, a novel digital twin framework that uses counterfactual explanations to simulate optimal treatments for glucose regulation. Our approach helps patients and caregivers modify behaviors like carbohydrate intake and insulin dosing to avoid abnormal glucose events. GlyTwin generates behavioral treatment suggestions that proactively prevent hyperglycemia by recommending small adjustments to daily choices, reducing both frequency and duration of these events. Additionally, it incorporates stakeholder preferences into the intervention design, making recommendations patient-centric and tailored. We evaluate GlyTwin on AZT1D, a newly constructed dataset with longitudinal data from 21 type 1 diabetes (T1D) patients on automated insulin delivery systems over 26 days. Results show GlyTwin outperforms state-of-the-art counterfactual methods, generating 76.6% valid and 86% effective interventions. These findings demonstrate the promise of counterfactual-driven digital twins in delivering personalized healthcare.
Seam carving is a popular technique for content aware image retargeting. It can be used to deliberately manipulate images, for example, change the GPS locations of a building or insert/remove roads in a satellite image. This paper proposes a novel approach for detecting and localizing seams in such images. While there are methods to detect seam carving based manipulations, this is the first time that robust localization and detection of seam carving forgery is made possible. We also propose a seam localization score (SLS) metric to evaluate the effectiveness of localization. The proposed method is evaluated extensively on a large collection of images from different sources, demonstrating a high level of detection and localization performance across these datasets. The datasets curated during this work will be released to the public.
In this work, we formulate and study the problem of image-editing detection and attribution: given a base image and a suspicious image, detection seeks to determine whether the suspicious image was derived from the base image using an AI editing model, while attribution further identifies the specific editing model responsible. Existing methods for detecting and attributing AI-generated images are insufficient for this problem, as they focus on determining whether an image was AI-generated/edited rather than whether it was edited from a particular base image. To bridge this gap, we propose EditTrack, the first framework for this image-editing detection and attribution problem. Building on four key observations about the editing process, EditTrack introduces a novel re-editing strategy and leverages carefully designed similarity metrics to determine whether a suspicious image originates from a base image and, if so, by which model. We evaluate EditTrack on five state-of-the-art editing models across six datasets, demonstrating that it consistently achieves accurate detection and attribution, significantly outperforming five baselines.
In response to challenges in software supply chain security, several organisations have created infrastructures to independently build commodity open source projects and release the resulting binaries. Build platform variability can strengthen security as it facilitates the detection of compromised build environments. Furthermore, by improving the security posture of the build platform and collecting provenance information during the build, the resulting artifacts can be used with greater trust. Such offerings are now available from Google, Oracle and RedHat. The availability of multiple binaries built from the same sources creates new challenges and opportunities, and raises questions such as: 'Does build A confirm the integrity of build B?' or 'Can build A reveal a compromised build B?'. To answer such questions requires a notion of equivalence between binaries. We demonstrate that the obvious approach based on bitwise equality has significant shortcomings in practice, and that there is value in opting for alternative notions. We conceptualise this by introducing levels of equivalence, inspired by clone detection types. We demonstrate the value of these new levels through several experiments. We construct a dataset consisting of Java binaries built from the same sources independently by different providers, resulting in 14,156 pairs of binaries in total. We then compare the compiled class files in those jar files and find that for 3,750 pairs of jars (26.49%) there is at least one such file that is different, also forcing the jar files and their cryptographic hashes to be different. However, based on the new equivalence levels, we can still establish that many of them are practically equivalent. We evaluate several candidate equivalence relations on a semi-synthetic dataset that provides oracles consisting of pairs of binaries that either should be, or must not be equivalent.
Thermal analysis is crucial in three-dimensional integrated circuit (3D-IC) design due to increased power density and complex heat dissipation paths. Although operator learning frameworks such as DeepOHeat have demonstrated promising preliminary results in accelerating thermal simulation, they face critical limitations in prediction capability for multi-scale thermal patterns, training efficiency, and trustworthiness of results during design optimization. This paper presents DeepOHeat-v1, an enhanced physics-informed operator learning framework that addresses these challenges through three key innovations. First, we integrate Kolmogorov-Arnold Networks with learnable activation functions as trunk networks, enabling an adaptive representation of multi-scale thermal patterns. This approach achieves a 1.25×1.25\times and 6.29×6.29\times reduction in error in two representative test cases. Second, we introduce a separable training method that decomposes the basis function along the coordinate axes, achieving 62×62\times training speedup and 31×31\times GPU memory reduction in our baseline case, and enabling thermal analysis at resolutions previously infeasible due to GPU memory constraints. Third, we propose a confidence score to evaluate the trustworthiness of the predicted results, and further develop a hybrid optimization workflow that combines operator learning with finite difference (FD) using Generalized Minimal Residual (GMRES) method for incremental solution refinement, enabling efficient and trustworthy thermal optimization. Experimental results demonstrate that DeepOHeat-v1 achieves accuracy comparable to optimization using high-fidelity finite difference solvers, while speeding up the entire optimization process by 70.6×70.6\times in our test cases, effectively minimizing the peak temperature through optimal placement of heat-generating components.
There are no more papers matching your filters at the moment.