quantum-machine-learning
Google DeepMind and Google Quantum AI introduce AlphaQubit 2 (AQ2), a neural decoder achieving near-optimal accuracy for topological quantum codes, including the surface code and the challenging color code, at large scales. Its real-time variant, AQ2-RT, processes error syndromes at sub-microsecond speeds on commercial hardware and demonstrates effectiveness on experimental data from the 105-qubit Willow chip.
Quantum Error Correction (QEC) decoding faces a fundamental accuracy-efficiency tradeoff. Classical methods like Minimum Weight Perfect Matching (MWPM) exhibit variable performance across noise models and suffer from polynomial complexity, while tensor network decoders achieve high accuracy but at prohibitively high computational cost. Recent neural decoders reduce complexity but lack the accuracy needed to compete with computationally expensive classical methods. We introduce SAQ-Decoder, a unified framework combining transformer-based learning with constraint aware post-processing that achieves both near Maximum Likelihood (ML) accuracy and linear computational scalability with respect to the syndrome size. Our approach combines a dual-stream transformer architecture that processes syndromes and logical information with asymmetric attention patterns, and a novel differentiable logical loss that directly optimizes Logical Error Rates (LER) through smooth approximations over finite fields. SAQ-Decoder achieves near-optimal performance, with error thresholds of 10.99% (independent noise) and 18.6% (depolarizing noise) on toric codes that approach the ML bounds of 11.0% and 18.9% while outperforming existing neural and classical baselines in accuracy, complexity, and parameter efficiency. Our findings establish that learned decoders can simultaneously achieve competitive decoding accuracy and computational efficiency, addressing key requirements for practical fault-tolerant quantum computing systems.
This work proposes a wavelet-based physics-informed quantum neural network framework to efficiently address multiscale partial differential equations that involve sharp gradients, stiffness, rapid local variations, and highly oscillatory behavior. Traditional physics-informed neural networks (PINNs) have demonstrated substantial potential in solving differential equations, and their quantum counterparts, quantum-PINNs, exhibit enhanced representational capacity with fewer trainable parameters. However, both approaches face notable challenges in accurately solving multiscale features. Furthermore, their reliance on automatic differentiation for constructing loss functions introduces considerable computational overhead, resulting in longer training times. To overcome these challenges, we developed a wavelet-accelerated physics-informed quantum neural network that eliminates the need for automatic differentiation, significantly reducing computational complexity. The proposed framework incorporates the multiresolution property of wavelets within the quantum neural network architecture, thereby enhancing the network's ability to effectively capture both local and global features of multiscale problems. Numerical experiments demonstrate that our proposed method achieves superior accuracy while requiring less than five percent of the trainable parameters compared to classical wavelet-based PINNs, resulting in faster convergence. Moreover, it offers a speedup of three to five times compared to existing quantum PINNs, highlighting the potential of the proposed approach for efficiently solving challenging multiscale and oscillatory problems.
We study the problem of certifying local Hamiltonians from real-time access to their dynamics. Given oracle access to eitHe^{-itH} for an unknown kk-local Hamiltonian HH and a fully specified target Hamiltonian H0H_0, the goal is to decide whether HH is exactly equal to H0H_0 or differs from H0H_0 by at least ε\varepsilon in normalized Frobenius norm, while minimizing the total evolution time. We introduce the first intolerant Hamiltonian certification protocol that achieves optimal performance for all constant-locality Hamiltonians. For general nn-qubit, kk-local, traceless Hamiltonians, our procedure uses O(ck/ε)O(c^k/\varepsilon) total evolution time for a universal constant cc, and succeeds with high probability. In particular, for O(1)O(1)-local Hamiltonians, the total evolution time becomes Θ(1/ε)\Theta(1/\varepsilon), matching the known Ω(1/ε)\Omega(1/\varepsilon) lower bounds and achieving the gold-standard Heisenberg-limit scaling. Prior certification methods either relied on implementing inverse evolution of HH, required controlled access to eitHe^{-itH}, or achieved near-optimal guarantees only in restricted settings such as the Ising case (k=2k=2). In contrast, our algorithm requires neither inverse evolution nor controlled operations: it uses only forward real-time dynamics and achieves optimal intolerant certification for all constant-locality Hamiltonians.
QKAN-LSTM and HQKAN-LSTM integrate quantum-inspired Kolmogorov-Arnold Networks (QKANs) into Long Short-term Memory architectures, employing single-qubit Data Re-Uploading Activation (DARUAN) units to enhance functional expressivity. These models achieve superior predictive accuracy and generalization across diverse time-series tasks, with up to a 99.5% reduction in trainable parameters compared to classical LSTMs.
15
Solving partial differential equations (PDEs) for reservoir seepage is critical for optimizing oil and gas field development and predicting production performance. Traditional numerical methods suffer from mesh-dependent errors and high computational costs, while classical Physics-Informed Neural Networks (PINNs) face bottlenecks in parameter efficiency, high-dimensional expression, and strong nonlinear fitting. To address these limitations, we propose a Discrete Variable (DV)-Circuit Quantum-Classical Physics-Informed Neural Network (QCPINN) and apply it to three typical reservoir seepage models for the first time: the pressure diffusion equation for heterogeneous single-phase flow, the nonlinear Buckley-Leverett (BL) equation for two-phase waterflooding, and the convection-diffusion equation for compositional flow considering adsorption. The QCPINN integrates classical preprocessing/postprocessing networks with a DV quantum core, leveraging quantum superposition and entanglement to enhance high-dimensional feature mapping while embedding physical constraints to ensure solution consistency. We test three quantum circuit topologies (Cascade, Cross-mesh, Alternate) and demonstrate through numerical experiments that QCPINNs achieve high prediction accuracy with fewer parameters than classical PINNs. Specifically, the Alternate topology outperforms others in heterogeneous single-phase flow and two-phase BL equation simulations, while the Cascade topology excels in compositional flow with convection-dispersion-adsorption coupling. Our work verifies the feasibility of QCPINN for reservoir engineering applications, bridging the gap between quantum computing research and industrial practice in oil and gas engineering.
Researchers at MIT developed a Neural Network Variational Monte Carlo (NN-VMC) framework, utilizing a self-attention architecture, to discover and characterize fractional Chern insulator (FCI) ground states in a continuum model with a periodic magnetic field. This approach achieved lower ground state energies compared to band-projected Exact Diagonalization and introduced "momentum spectroscopy" to robustly identify the characteristic three-fold topological degeneracy from a single optimized wavefunction.
Hilbert space fragmentation is a phenomenon in which the Hilbert space of a quantum system is dynamically decoupled into exponentially many Krylov subspaces. We can define the Schur transform as a unitary operation mapping some set of preferred bases of these Krylov subspaces to computational basis states labeling them. We prove that this transformation can be efficiently learned via gradient descent from a set of training data using quantum neural networks, provided that the fragmentation is sufficiently strong such that the summed dimension of the unique Krylov subspaces is polynomial in the system size. To demonstrate this, we analyze the loss landscapes of random quantum neural networks constructed out of Hilbert space fragmented systems. We prove that in this setting, it is possible to eliminate barren plateaus and poor local minima, suggesting efficient trainability when using gradient descent. Furthermore, as the algebra defining the fragmentation is not known a priori and not guaranteed to have sparse algebra elements, to the best of our knowledge there are no existing efficient classical algorithms generally capable of simulating expectation values in these networks. Our setting thus provides a rare example of a physically motivated quantum learning task with no known dequantization.
In recent years, machine learning and deep learning have driven advances in domains such as image classification, speech recognition, and anomaly detection by leveraging multi-layer neural networks to model complex data. Simultaneously, quantum computing (QC) promises to address classically intractable problems via quantum parallelism, motivating research in quantum machine learning (QML). Among QML techniques, quantum autoencoders show promise for compressing high-dimensional quantum and classical data. However, designing effective quantum circuit architectures for quantum autoencoders remains challenging due to the complexity of selecting gates, arranging circuit layers, and tuning parameters. This paper proposes a neural architecture search (NAS) framework that automates the design of quantum autoencoders using a genetic algorithm (GA). By systematically evolving variational quantum circuit (VQC) configurations, our method seeks to identify high-performing hybrid quantum-classical autoencoders for data reconstruction without becoming trapped in local minima. We demonstrate effectiveness on image datasets, highlighting the potential of quantum autoencoders for efficient feature extraction within a noise-prone, near-term quantum era. Our approach lays a foundation for broader application of genetic algorithms to quantum architecture search, aiming for a robust, automated method that can adapt to varied data and hardware constraints.
Quantum error correction (QEC) is essential for scalable quantum computing, yet decoding errors via conventional algorithms result in limited accuracy (i.e., suppression of logical errors) and high overheads, both of which can be alleviated by inference-based decoders. To date, such machine-learning (ML) decoders lack two key properties crucial for practical fault tolerance: reliable uncertainty quantification and robust generalization to previously unseen codes. To address this gap, we propose \textbf{QuBA}, a Bayesian graph neural decoder that integrates attention to both dot-product and multi-head, enabling expressive error-pattern recognition alongside calibrated uncertainty estimates. Building on QuBA, we further develop \textbf{SAGU }\textbf{(Sequential Aggregate Generalization under Uncertainty)}, a multi-code training framework with enhanced cross-domain robustness enabling decoding beyond the training set. Experiments on bivariate bicycle (BB) codes and their coprime variants demonstrate that (i) both QuBA and SAGU consistently outperform the classical baseline belief propagation (BP), achieving a reduction of on average \emph{one order of magnitude} in logical error rate (LER), and up to \emph{two orders of magnitude} under confident-decision bounds on the coprime BB code [[154,6,16]][[154, 6, 16]]; (ii) QuBA also surpasses state-of-the-art neural decoders, providing an advantage of roughly \emph{one order of magnitude} (e.g., for the larger BB code [[756,16,34]][[756, 16, \leq34]]) even when considering conservative (safe) decision bounds; (iii) SAGU achieves decoding performance comparable to or even outperforming QuBA's domain-specific training approach.
The rapid development of machine learning and quantum computing has placed quantum machine learning at the forefront of research. However, existing quantum machine learning algorithms based on quantum variational algorithms face challenges in trainability and noise robustness. In order to address these challenges, we introduce a gradient-free, noise-robust quantum reservoir computing algorithm that harnesses discrete time crystal dynamics as a reservoir. We first calibrate the memory, nonlinear, and information scrambling capacities of the quantum reservoir, revealing their correlation with dynamical phases and non-equilibrium phase transitions. We then apply the algorithm to the binary classification task and establish a comparative quantum kernel advantage. For ten-class classification, both noisy simulations and experimental results on superconducting quantum processors match ideal simulations, demonstrating the enhanced accuracy with increasing system size and confirming the topological noise robustness. Our work presents the first experimental demonstration of quantum reservoir computing for image classification based on digital quantum simulation. It establishes the correlation between quantum many-body non-equilibrium phase transitions and quantum machine learning performance, providing new design principles for quantum reservoir computing and broader quantum machine learning algorithms in the NISQ era.
A fundamental limitation of probabilistic deep learning is its predominant reliance on Gaussian priors. This simplistic assumption prevents models from accurately capturing the complex, non-Gaussian landscapes of natural data, particularly in demanding domains like complex biological data, severely hindering the fidelity of the model for scientific discovery. The physically-grounded Boltzmann distribution offers a more expressive alternative, but it is computationally intractable on classical computers. To date, quantum approaches have been hampered by the insufficient qubit scale and operational stability required for the iterative demands of deep learning. Here, we bridge this gap by introducing the Quantum Boltzmann Machine-Variational Autoencoder (QBM-VAE), a large-scale and long-time stable hybrid quantum-classical architecture. Our framework leverages a quantum processor for efficient sampling from the Boltzmann distribution, enabling its use as a powerful prior within a deep generative model. Applied to million-scale single-cell datasets from multiple sources, the QBM-VAE generates a latent space that better preserves complex biological structures, consistently outperforming conventional Gaussian-based deep learning models like VAE and SCVI in essential tasks such as omics data integration, cell-type classification, and trajectory inference. It also provides a typical example of introducing a physics priori into deep learning to drive the model to acquire scientific discovery capabilities that breaks through data limitations. This work provides the demonstration of a practical quantum advantage in deep learning on a large-scale scientific problem and offers a transferable blueprint for developing hybrid quantum AI models.
Neural-network quantum states (NQS) are powerful neural-network ansätzes that have emerged as promising tools for studying quantum many-body physics through the lens of the variational principle. These architectures are known to be systematically improvable by increasing the number of parameters. Here we demonstrate an Adaptive scheme to optimize NQSs, through the example of recurrent neural networks (RNN), using a fraction of the computation cost while reducing training fluctuations and improving the quality of variational calculations targeting ground states of prototypical models in one- and two-spatial dimensions. This Adaptive technique reduces the computational cost through training small RNNs and reusing them to initialize larger RNNs. This work opens up the possibility for optimizing graphical processing unit (GPU) resources deployed in large-scale NQS simulations.
We propose a novel approach, OrQstrator, which is a modular framework for conducting quantum circuit optimization in the Noisy Intermediate-Scale Quantum (NISQ) era. Our framework is powered by Deep Reinforcement Learning (DRL). Our orchestration engine intelligently selects among three complementary circuit optimizers: A DRL-based circuit rewriter trained to reduce depth and gate count via learned rewrite sequences; a domain-specific optimizer that performs efficient local gate resynthesis and numeric optimization; a parameterized circuit instantiator that improves compilation by optimizing template circuits during gate set translation. These modules are coordinated by a central orchestration engine that learns coordination policies based on circuit structure, hardware constraints, and backend-aware performance features such as gate count, depth, and expected fidelity. The system outputs an optimized circuit for hardware-aware transpilation and execution, leveraging techniques from an existing state-of-the-art approach, called the NISQ Analyzer, to adapt to backend constraints.
Researchers from the University of Arkansas, Kansas State University, and the University of Delaware developed QMoE, a Quantum Mixture of Experts framework that enhances quantum neural network scalability and expressiveness. The framework consistently achieves higher classification accuracies on MNIST and Fashion-MNIST datasets, such as improving MNIST-4 accuracy to 62.92% from 51.47% compared to standard QNNs.
A quantum-enhanced parameter-efficient learning framework, Quantum Parameter Adaptation (QPA), is introduced for typhoon trajectory forecasting, achieving over 96% parameter reduction while maintaining comparable prediction accuracy to traditional models. This method represents the first application of Quantum Parameter Adaptation to climate modeling, demonstrating a pathway toward more computationally efficient and sustainable weather prediction systems.
Variational quantum algorithms hold the promise to address meaningful quantum problems already on noisy intermediate-scale quantum hardware. In spite of the promise, they face the challenge of designing quantum circuits that both solve the target problem and comply with device limitations. Quantum architecture search (QAS) automates the design process of quantum circuits, with reinforcement learning (RL) emerging as a promising approach. Yet, RL-based QAS methods encounter significant scalability issues, as computational and training costs grow rapidly with the number of qubits, circuit depth, and hardware noise. To address these challenges, we introduce TensorRL-QAS\textit{TensorRL-QAS}, an improved framework that combines tensor network methods with RL for QAS. By warm-starting the QAS with a matrix product state approximation of the target solution, TensorRL-QAS effectively narrows the search space to physically meaningful circuits and accelerates the convergence to the desired solution. Tested on several quantum chemistry problems of up to 12-qubit, TensorRL-QAS achieves up to a 10-fold reduction in CNOT count and circuit depth compared to baseline methods, while maintaining or surpassing chemical accuracy. It reduces classical optimizer function evaluation by up to 100-fold, accelerates training episodes by up to 98%\%, and can achieve 50%\% success probability for 10-qubit systems, far exceeding the <1%\% rates of baseline. Robustness and versatility are demonstrated both in the noiseless and noisy scenarios, where we report a simulation of an 8-qubit system. Furthermore, TensorRL-QAS demonstrates effectiveness on systems on 20-qubit quantum systems, positioning it as a state-of-the-art quantum circuit discovery framework for near-term hardware and beyond.
Researchers at Osaka University and RIKEN Center for Quantum Computing developed an LLM-powered agentic system capable of autonomously designing, implementing, and optimizing quantum feature maps. This system iteratively refines feature maps, leading to improved classification accuracy on benchmark image datasets like MNIST, Fashion-MNIST, and CIFAR-10, outperforming existing quantum feature maps.
1
Researchers at Pennsylvania State University introduced dataset distillation to Quantum Neural Networks, showing it dramatically reduces training data requirements while achieving comparable inferencing accuracy to classical models on MNIST and Cifar-10. Their Quantum LeNet architecture, enhanced with residual connections and a trainable Hermitian observable, mitigated vanishing gradients and improved stability.
6
Self-attention has revolutionized classical machine learning, yet existing quantum self-attention models underutilize quantum states' potential due to oversimplified or incomplete mechanisms. To address this limitation, we introduce the Quantum Complex-Valued Self-Attention Model (QCSAM), the first framework to leverage complex-valued similarities, which captures amplitude and phase relationships between quantum states more comprehensively. To achieve this, QCSAM extends the Linear Combination of Unitaries (LCUs) into the Complex LCUs (CLCUs) framework, enabling precise complex-valued weighting of quantum states and supporting quantum multi-head attention. Experiments on MNIST and Fashion-MNIST show that QCSAM outperforms recent quantum self-attention models, including QKSAN, QSAN, and GQHAN. With only 4 qubits, QCSAM achieves 100% and 99.2% test accuracies on MNIST and Fashion-MNIST, respectively. Furthermore, we evaluate scalability across 3-8 qubits and 2-4 class tasks, while ablation studies validate the advantages of complex-valued attention weights over real-valued alternatives. This work advances quantum machine learning by enhancing the expressiveness and precision of quantum self-attention in a way that aligns with the inherent complexity of quantum mechanics.
There are no more papers matching your filters at the moment.