text-generation
The DEMOCRITUS system establishes a new framework for building large causal models (LCMs) by extracting and structuring textual knowledge from Large Language Models (LLMs) across diverse domains. It leverages a Geometric Transformer to embed and organize vast causal claims into coherent, navigable manifolds, which, unlike raw LLM outputs, exhibit global causal coherence and interpretable local structures.
6
DeepCode presents a multi-stage agentic framework for autonomously generating executable code repositories from scientific papers, achieving a 73.5% replication score on the PaperBench Code-Dev benchmark and exceeding PhD-level human expert performance.
11,697
CLINICALTRIALSHUB unifies clinical trial data from structured registries and unstructured scientific literature, expanding access to structured trial information by 83.8% and providing evidence-grounded, interactive question answering. This platform, developed at The Ohio State University, leverages advanced Large Language Models to streamline information discovery and synthesis for medical professionals and researchers.
Edward Y. Chang from Stanford University proposes a "Substrate plus Coordination" framework for Artificial General Intelligence (AGI), arguing that Large Language Models (LLMs) provide a necessary System-1 pattern-matching substrate that requires a System-2 coordination layer to achieve reliable, goal-directed reasoning. This work formalizes semantic anchoring through the Unified Contextual Control Theory (UCCT) and introduces the Multi-Agent Collaborative Intelligence (MACI) architecture to implement this missing layer.
Researchers at RheinMain University of Applied Sciences introduce multicalibration to LLM-based code generation, demonstrating that incorporating code-related contextual information significantly enhances the reliability of confidence scores. The approach achieves up to a 58.4% improvement in binary classification accuracy for code correctness over uncalibrated methods and consistently outperforms traditional calibration baselines.
Fast-ARDiff introduces an entropy-informed acceleration framework for continuous-space AR-Diffusion hybrid generative models. This framework achieves up to a 4.88x speedup in inference latency with minimal quality degradation by addressing challenges like entropy mismatch in visual speculative decoding and instability in diffusion distillation.
Understanding how the human brain represents visual concepts, and in which brain regions these representations are encoded, remains a long-standing challenge. Decades of work have advanced our understanding of visual representations, yet brain signals remain large and complex, and the space of possible visual concepts is vast. As a result, most studies remain small-scale, rely on manual inspection, focus on specific regions and properties, and rarely include systematic validation. We present a large-scale, automated framework for discovering and explaining visual representations across the human cortex. Our method comprises two main stages. First, we discover candidate interpretable patterns in fMRI activity through unsupervised, data-driven decomposition methods. Next, we explain each pattern by identifying the set of natural images that most strongly elicit it and generating a natural-language description of their shared visual meaning. To scale this process, we introduce an automated pipeline that tests multiple candidate explanations, assigns quantitative reliability scores, and selects the most consistent description for each voxel pattern. Our framework reveals thousands of interpretable patterns spanning many distinct visual concepts, including fine-grained representations previously unreported.
Fliggy Alibaba researchers developed Progressive Reward Shaping (PRS) and Value-based Sampling Policy Optimization (VSPO) to improve large language model agents performing Tool-Integrated Reasoning. Their methods provide dense, stage-wise feedback and enhance policy optimization, leading to superior performance on short-form QA (0.419 average EM score with VSPO+PRS) and significant gains on long-form QA, particularly for multi-query tasks.
Retrieval-Augmented Generation (RAG) integrates non-parametric knowledge into Large Language Models (LLMs), typically from unstructured texts and structured graphs. While recent progress has advanced text-based RAG to multi-turn reasoning through Reinforcement Learning (RL), extending these advances to hybrid retrieval introduces additional challenges. Existing graph-based or hybrid systems typically depend on fixed or handcrafted retrieval pipelines, lacking the ability to integrate supplementary evidence as reasoning unfolds. Besides, while graph evidence provides relational structures crucial for multi-hop reasoning, it is substantially more expensive to retrieve. To address these limitations, we introduce \model{}, an RL-based framework that enables LLMs to perform multi-turn and adaptive graph-text hybrid RAG. \model{} jointly optimizes the entire generation process via RL, allowing the model to learn when to reason, what to retrieve from either texts or graphs, and when to produce final answers, all within a unified generation policy. To guide this learning process, we design a two-stage training framework that accounts for both task outcome and retrieval efficiency, enabling the model to exploit hybrid evidence while avoiding unnecessary retrieval overhead. Experimental results across five question answering benchmarks demonstrate that \model{} significantly outperforms existing RAG baselines, highlighting the benefits of end-to-end RL in supporting adaptive and efficient retrieval for complex reasoning.
Diffusion (Large) Language Models (dLLMs) now match the downstream performance of their autoregressive counterparts on many tasks, while holding the promise of being more efficient during inference. One particularly successful variant is masked discrete diffusion, in which a buffer filled with special mask tokens is progressively replaced with tokens sampled from the model's vocabulary. Efficiency can be gained by unmasking several tokens in parallel, but doing too many at once risks degrading the generation quality. Thus, one critical design aspect of dLLMs is the sampling procedure that selects, at each step of the diffusion process, which tokens to replace. Indeed, recent work has found that heuristic strategies such as confidence thresholding lead to both higher quality and token throughput compared to random unmasking. However, such heuristics have downsides: they require manual tuning, and we observe that their performance degrades with larger buffer sizes. In this work, we instead propose to train sampling procedures using reinforcement learning. Specifically, we formalize masked diffusion sampling as a Markov decision process in which the dLLM serves as the environment, and propose a lightweight policy architecture based on a single-layer transformer that maps dLLM token confidences to unmasking decisions. Our experiments show that these trained policies match the performance of state-of-the-art heuristics when combined with semi-autoregressive generation, while outperforming them in the full diffusion setting. We also examine the transferability of these policies, finding that they can generalize to new underlying dLLMs and longer sequence lengths. However, we also observe that their performance degrades when applied to out-of-domain data, and that fine-grained tuning of the accuracy-efficiency trade-off can be challenging with our approach.
A study by NYU Abu Dhabi and UC Davis demonstrated that Large Language Models internalize a signal of code correctness, which can be extracted to rank code candidates more effectively than traditional confidence measures. Their Representation Engineering method improved code selection accuracy by up to 29 percentage points and often surpassed execution-feedback based rankers.
Interpreto is a Python library for post-hoc explainability of text HuggingFace models, from early BERT variants to LLMs. It provides two complementary families of methods: attributions and concept-based explanations. The library connects recent research to practical tooling for data scientists, aiming to make explanations accessible to end users. It includes documentation, examples, and tutorials. Interpreto supports both classification and generation models through a unified API. A key differentiator is its concept-based functionality, which goes beyond feature-level attributions and is uncommon in existing libraries. The library is open source; install via pip install interpreto. Code and documentation are available at this https URL.
71
SkipKV optimizes Large Reasoning Model inference by selectively managing KV cache storage and generation at the sentence level, using a training-free approach. The method reduces KV memory by up to 6.7x, lowers generation length by 28%, and improves throughput by 9.6x while maintaining or enhancing reasoning accuracy.
Pre-training decoder-only language models relies on vast amounts of high-quality data, yet the availability of such data is increasingly reaching its limits. While metadata is commonly used to create and curate these datasets, its potential as a direct training signal remains under-explored. We challenge this status quo and propose LIME (Linguistic Metadata Embeddings), a method that enriches token embeddings with metadata capturing syntax, semantics, and contextual properties. LIME substantially improves pre-training efficiency. Specifically, it adapts up to 56% faster to the training data distribution, while introducing only 0.01% additional parameters at negligible compute overhead. Beyond efficiency, LIME improves tokenization, leading to remarkably stronger language modeling capabilities and generative task performance. These benefits persist across model scales (500M to 2B). In addition, we develop a variant with shifted metadata, LIME+1, that can guide token generation. Given prior metadata for the next token, LIME+1 improves reasoning performance by up to 38% and arithmetic accuracy by up to 35%.
Consistency-based methods have emerged as an effective approach to uncertainty quantification (UQ) in large language models. These methods typically rely on several generations obtained via multinomial sampling, measuring their agreement level. However, in short-form QA, multinomial sampling is prone to producing duplicates due to peaked distributions, and its stochasticity introduces considerable variance in uncertainty estimates across runs. We introduce a new family of methods that employ beam search to generate candidates for consistency-based UQ, yielding improved performance and reduced variance compared to multinomial sampling. We also provide a theoretical lower bound on the beam set probability mass under which beam search achieves a smaller error than multinomial sampling. We empirically evaluate our approach on six QA datasets and find that its consistent improvements over multinomial sampling lead to state-of-the-art UQ performance.
Objective speech quality assessment is central to telephony, VoIP, and streaming systems, where large volumes of degraded audio must be monitored and optimized at scale. Classical metrics such as PESQ and POLQA approximate human mean opinion scores (MOS) but require carefully controlled conditions and expensive listening tests, while learning-based models such as NISQA regress MOS and multiple perceptual dimensions from waveforms or spectrograms, achieving high correlation with subjective ratings yet remaining rigid: they do not support interactive, natural-language queries and do not natively provide textual rationales. In this work, we introduce SpeechQualityLLM, a multimodal speech quality question-answering (QA) system that couples an audio encoder with a language model and is trained on the NISQA corpus using template-based question-answer pairs covering overall MOS and four perceptual dimensions (noisiness, coloration, discontinuity, and loudness) in both single-ended (degraded only) and double-ended (degraded plus clean reference) setups. Instead of directly regressing scores, our system is supervised to generate textual answers from which numeric predictions are parsed and evaluated with standard regression and ranking metrics; on held-out NISQA clips, the double-ended model attains a MOS mean absolute error (MAE) of 0.41 with Pearson correlation of 0.86, with competitive performance on dimension-wise tasks. Beyond these quantitative gains, it offers a flexible natural-language interface in which the language model acts as an audio quality expert: practitioners can query arbitrary aspects of degradations, prompt the model to emulate different listener profiles to capture human variability and produce diverse but plausible judgments rather than a single deterministic score, and thereby reduce reliance on large-scale crowdsourced tests and their monetary cost.
We present an end-to-end framework for planning supported by verifiers. An orchestrator receives a human specification written in natural language and converts it into a PDDL (Planning Domain Definition Language) model, where the domain and problem are iteratively refined by sub-modules (agents) to address common planning requirements, such as time constraints and optimality, as well as ambiguities and contradictions that may exist in the human specification. The validated domain and problem are then passed to an external planning engine to generate a plan. The orchestrator and agents are powered by Large Language Models (LLMs) and require no human intervention at any stage of the process. Finally, a module translates the final plan back into natural language to improve human readability while maintaining the correctness of each step. We demonstrate the flexibility and effectiveness of our framework across various domains and tasks, including the Google NaturalPlan benchmark and PlanBench, as well as planning problems like Blocksworld and the Tower of Hanoi (where LLMs are known to struggle even with small instances). Our framework can be integrated with any PDDL planning engine and validator (such as Fast Downward, LPG, POPF, VAL, and uVAL, which we have tested) and represents a significant step toward end-to-end planning aided by LLMs.
We investigate the short-context dominance hypothesis: that for most sequences, a small local prefix suffices to predict their next tokens. Using large language models as statistical oracles, we measure the minimum context length (MCL) needed to reproduce accurate full-context predictions across datasets with sequences of varying lengths. For sequences with 1-7k tokens from long-context documents, we consistently find that 75-80% require only the last 96 tokens at most. Given the dominance of short-context tokens, we then ask whether it is possible to detect challenging long-context sequences for which a short local prefix does not suffice for prediction. We introduce a practical proxy to MCL, called Distributionally Aware MCL (DaMCL), that does not require knowledge of the actual next-token and is compatible with sampling strategies beyond greedy decoding. Our experiments validate that simple thresholding of the metric defining DaMCL achieves high performance in detecting long vs. short context sequences. Finally, to counter the bias that short-context dominance induces in LLM output distributions, we develop an intuitive decoding algorithm that leverages our detector to identify and boost tokens that are long-range-relevant. Across Q&A tasks and model architectures, we confirm that mitigating the bias improves performance.
Automatically synthesizing verifiable code from natural language requirements ensures software correctness and reliability while significantly lowering the barrier to adopting the techniques of formal methods. With the rise of large language models (LLMs), long-standing efforts at autoformalization have gained new momentum. However, existing approaches suffer from severe syntactic and semantic errors due to the scarcity of domain-specific pre-training corpora and often fail to formalize implicit knowledge effectively. In this paper, we propose AutoICE, an LLM-driven evolutionary search for synthesizing verifiable C code. It introduces the diverse individual initialization and the collaborative crossover to enable diverse iterative updates, thereby mitigating error propagation inherent in single-agent iterations. Besides, it employs the self-reflective mutation to facilitate the discovery of implicit knowledge. Evaluation results demonstrate the effectiveness of AutoICE: it successfully verifies 90.3690.36\% of code, outperforming the state-of-the-art (SOTA) approach. Besides, on a developer-friendly dataset variant, AutoICE achieves a 88.3388.33\% verification success rate, significantly surpassing the 6565\% success rate of the SOTA approach.
Graph-based Retrieval-Augmented Generation (GraphRAG) enhances Large Language Models (LLMs) by incorporating external knowledge from linearized subgraphs retrieved from knowledge graphs. However, LLMs struggle to interpret the relational and topological information in these inputs, resulting in hallucinations that are inconsistent with the retrieved knowledge. To analyze how LLMs attend to and retain structured knowledge during generation, we propose two lightweight interpretability metrics: Path Reliance Degree (PRD), which measures over-reliance on shortest-path triples, and Semantic Alignment Score (SAS), which assesses how well the model's internal representations align with the retrieved knowledge. Through empirical analysis on a knowledge-based QA task, we identify failure patterns associated with over-reliance on salient paths and weak semantic grounding, as indicated by high PRD and low SAS scores. We further develop a lightweight post-hoc hallucination detector, Graph Grounding and Alignment (GGA), which outperforms strong semantic and confidence-based baselines across AUC and F1. By grounding hallucination analysis in mechanistic interpretability, our work offers insights into how structural limitations in LLMs contribute to hallucinations, informing the design of more reliable GraphRAG systems in the future.
There are no more papers matching your filters at the moment.