Lule University of Technology
Handwritten Text Generation (HTG) conditioned on text and style is a challenging task due to the variability of inter-user characteristics and the unlimited combinations of characters that form new words unseen during training. Diffusion Models have recently shown promising results in HTG but still remain under-explored. We present DiffusionPen (DiffPen), a 5-shot style handwritten text generation approach based on Latent Diffusion Models. By utilizing a hybrid style extractor that combines metric learning and classification, our approach manages to capture both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples. Moreover, we explore several variation strategies of the data with multi-style mixtures and noisy embeddings, enhancing the robustness and diversity of the generated data. Extensive experiments using IAM offline handwriting database show that our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems. The code is available at: this https URL.
36
Efficient transmission of 3D point cloud data is critical for advanced perception in centralized and decentralized multi-agent robotic systems, especially nowadays with the growing reliance on edge and cloud-based processing. However, the large and complex nature of point clouds creates challenges under bandwidth constraints and intermittent connectivity, often degrading system performance. We propose a deep compression framework based on semantic scene graphs. The method decomposes point clouds into semantically coherent patches and encodes them into compact latent representations with semantic-aware encoders conditioned by Feature-wise Linear Modulation (FiLM). A folding-based decoder, guided by latent features and graph node attributes, enables structurally accurate reconstruction. Experiments on the SemanticKITTI and nuScenes datasets show that the framework achieves state-of-the-art compression rates, reducing data size by up to 98% while preserving both structural and semantic fidelity. In addition, it supports downstream applications such as multi-robot pose graph optimization and map merging, achieving trajectory accuracy and map alignment comparable to those obtained with raw LiDAR scans.
1
This work establishes the concept of commonsense scene composition, with a focus on extending Belief Scene Graphs by estimating the spatial distribution of unseen objects. Specifically, the commonsense scene composition capability refers to the understanding of the spatial relationships among related objects in the scene, which in this article is modeled as a joint probability distribution for all possible locations of the semantic object class. The proposed framework includes two variants of a Correlation Information (CECI) model for learning probability distributions: (i) a baseline approach based on a Graph Convolutional Network, and (ii) a neuro-symbolic extension that integrates a spatial ontology based on Large Language Models (LLMs). Furthermore, this article provides a detailed description of the dataset generation process for such tasks. Finally, the framework has been validated through multiple runs on simulated data, as well as in a real-world indoor environment, demonstrating its ability to spatially interpret scenes across different room types.
· +1
Pretrained language models are an integral part of AI applications, but their high computational cost for training limits accessibility. Initiatives such as Bloom and StarCoder aim to democratize access to pretrained models for collaborative community development. Despite these efforts, such models encounter challenges such as limited multilingual capabilities, risks of catastrophic forgetting during continual pretraining, and the high costs of training models from scratch, alongside the need to align with AI safety standards and regulatory frameworks. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435B additional tokens, Aurora-M surpasses 2T tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. We evaluate Aurora-M across a wide range of tasks and languages, showcasing its robustness against catastrophic forgetting and its superior performance in multilingual settings, particularly in safety evaluations. We open-source Aurora-M and its variants to encourage responsible open-source development of large language models at this https URL
This two-part comprehensive survey is devoted to a computing framework most commonly known under the names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a family of computational models that use high-dimensional distributed representations and rely on the algebraic properties of their key operations to incorporate the advantages of structured symbolic representations and vector distributed representations. Notable models in the HDC/VSA family are Tensor Product Representations, Holographic Reduced Representations, Multiply-Add-Permute, Binary Spatter Codes, and Sparse Binary Distributed Representations but there are other models too. HDC/VSA is a highly interdisciplinary field with connections to computer science, electrical engineering, artificial intelligence, mathematics, and cognitive science. This fact makes it challenging to create a thorough overview of the field. However, due to a surge of new researchers joining the field in recent years, the necessity for a comprehensive survey of the field has become extremely important. Therefore, amongst other aspects of the field, this Part I surveys important aspects such as: known computational models of HDC/VSA and transformations of various input data types to high-dimensional distributed representations. Part II of this survey is devoted to applications, cognitive computing and architectures, as well as directions for future work. The survey is written to be useful for both newcomers and practitioners.
In this article we propose a reactive constrained navigation scheme, with embedded obstacles avoidance for an Unmanned Aerial Vehicle (UAV), for enabling navigation in obstacle-dense environments. The proposed navigation architecture is based on Nonlinear Model Predictive Control (NMPC), and utilizes an on-board 2D LiDAR to detect obstacles and translate online the key geometric information of the environment into parametric constraints for the NMPC that constrain the available position-space for the UAV. This article focuses also on the real-world implementation and experimental validation of the proposed reactive navigation scheme, and it is applied in multiple challenging laboratory experiments, where we also conduct comparisons with relevant methods of reactive obstacle avoidance. The solver utilized in the proposed approach is the Optimization Engine (OpEn) and the Proximal Averaged Newton for Optimal Control (PANOC) algorithm, where a penalty method is applied to properly consider obstacles and input constraints during the navigation task. The proposed novel scheme allows for fast solutions, while using limited on-board computational power, that is a required feature for the overall closed loop performance of an UAV and is applied in multiple real-time scenarios. The combination of built-in obstacle avoidance and real-time applicability makes the proposed reactive constrained navigation scheme an elegant framework for UAVs that is able to perform fast nonlinear control, local path-planning and obstacle avoidance, all embedded in the control layer.
Diffusion-based Handwritten Text Generation (HTG) approaches achieve impressive results on frequent, in-vocabulary words observed at training time and on regular styles. However, they are prone to memorizing training samples and often struggle with style variability and generation clarity. In particular, standard diffusion models tend to produce artifacts or distortions that negatively affect the readability of the generated text, especially when the style is hard to produce. To tackle these issues, we propose a novel sampling guidance strategy, Dual Orthogonal Guidance (DOG), that leverages an orthogonal projection of a negatively perturbed prompt onto the original positive prompt. This approach helps steer the generation away from artifacts while maintaining the intended content, and encourages more diverse, yet plausible, outputs. Unlike standard Classifier-Free Guidance (CFG), which relies on unconditional predictions and produces noise at high guidance scales, DOG introduces a more stable, disentangled direction in the latent space. To control the strength of the guidance across the denoising process, we apply a triangular schedule: weak at the start and end of denoising, when the process is most sensitive, and strongest in the middle steps. Experimental results on the state-of-the-art DiffusionPen and One-DM demonstrate that DOG improves both content clarity and style variability, even for out-of-vocabulary words and challenging writing styles.
This paper reviews Vector Symbolic Architectures (VSA), also known as Hyperdimensional Computing (HDC), as a unified computing framework for emerging, error-prone hardware. It demonstrates VSA's ability to represent diverse data structures and achieve robust, energy-efficient computation through "computing in superposition."
Motivated by recent innovations in biologically-inspired neuromorphic hardware, this article presents a novel unsupervised machine learning algorithm named Hyperseed that draws on the principles of Vector Symbolic Architectures (VSA) for fast learning of a topology preserving feature map of unlabelled data. It relies on two major operations of VSA, binding and bundling. The algorithmic part of Hyperseed is expressed within Fourier Holographic Reduced Representations model, which is specifically suited for implementation on spiking neuromorphic hardware. The two primary contributions of the Hyperseed algorithm are, few-shot learning and a learning rule based on single vector operation. These properties are empirically evaluated on synthetic datasets as well as on illustrative benchmark use-cases, IRIS classification, and a language identification task using n-gram statistics. The results of these experiments confirm the capabilities of Hyperseed and its applications in neuromorphic hardware.
Altermagnetism represents a recently established class of collinear magnetism that combines zero net magnetization with momentum-dependent spin polarization, enabled by symmetry constraints rather than spin-orbit coupling. This distinctive behavior gives rise to sizable spin splitting even in materials composed of light, earth-abundant elements, offering promising prospects for next-generation spintronics applications. Despite growing theoretical and experimental interest, the discovery of altermagnetic materials remains limited due to the complexity of magnetic symmetry and the inefficiency of conventional approaches. Here, we present a comprehensive high-throughput screening of the entire MAGNDATA database, integrating symmetry analysis with spin-polarized density functional theory (DFT) calculations to identify and characterize altermagnetic candidates. Our workflow uncovers 173 materials exhibiting significant spin splitting (50\geq 50 meV within ±3\pm 3 eV of the Fermi level), spanning both metallic and semiconducting systems. Crucially, our momentum-resolved analysis reveals that the spin splitting varies strongly across the Brillouin zone, and that the maximal splitting tends to occur away from the high-symmetry paths, a result that directly informs and guides future photoemission experiments. By expanding the catalog of known altermagnets and elucidating the symmetry-protected origins of spin splitting, this work lays a robust foundation for future experimental and theoretical advances in spintronics and quantum materials discovery.
In this article, we propose the novel concept of Belief Scene Graphs, which are utility-driven extensions of partial 3D scene graphs, that enable efficient high-level task planning with partial information. We propose a graph-based learning methodology for the computation of belief (also referred to as expectation) on any given 3D scene graph, which is then used to strategically add new nodes (referred to as blind nodes) that are relevant to a robotic mission. We propose the method of Computation of Expectation based on Correlation Information (CECI), to reasonably approximate real Belief/Expectation, by learning histograms from available training data. A novel Graph Convolutional Neural Network (GCN) model is developed, to learn CECI from a repository of 3D scene graphs. As no database of 3D scene graphs exists for the training of the novel CECI model, we present a novel methodology for generating a 3D scene graph dataset based on semantically annotated real-life 3D spaces. The generated dataset is then utilized to train the proposed CECI model and for extensive validation of the proposed method. We establish the novel concept of \textit{Belief Scene Graphs} (BSG), as a core component to integrate expectations into abstract representations. This new concept is an evolution of the classical 3D scene graph concept and aims to enable high-level reasoning for task planning and optimization of a variety of robotics missions. The efficacy of the overall framework has been evaluated in an object search scenario, and has also been tested in a real-life experiment to emulate human common sense of unseen-objects. For a video of the article, showcasing the experimental demonstration, please refer to the following link: this https URL
In this work, we introduce SPADE, a path planning framework designed for autonomous navigation in dynamic environments using 3D scene graphs. SPADE combines hierarchical path planning with local geometric awareness to enable collision-free movement in dynamic scenes. The framework bifurcates the planning problem into two: (a) solving the sparse abstract global layer plan and (b) iterative path refinement across denser lower local layers in step with local geometric scene navigation. To ensure efficient extraction of a feasible route in a dense multi-task domain scene graphs, the framework enforces informed sampling of traversable edges prior to path-planning. This removes extraneous information not relevant to path-planning and reduces the overall planning complexity over a graph. Existing approaches address the problem of path planning over scene graphs by decoupling hierarchical and geometric path evaluation processes. Specifically, this results in an inefficient replanning over the entire scene graph when encountering path obstructions blocking the original route. In contrast, SPADE prioritizes local layer planning coupled with local geometric scene navigation, enabling navigation through dynamic scenes while maintaining efficiency in computing a traversable route. We validate SPADE through extensive simulation experiments and real-world deployment on a quadrupedal robot, demonstrating its efficacy in handling complex and dynamic scenarios.
Proactive collision avoidance measures are imperative in environments where humans and robots coexist. Moreover, the introduction of high quality legged robots into workplaces highlighted the crucial role of a robust, fully autonomous safety solution for robots to be viable in shared spaces or in co-existence with humans. This article establishes for the first time ever an innovative Detect-Track-and-Avoid Architecture (DTAA) to enhance safety and overall mission performance. The proposed novel architectyre has the merit ot integrating object detection using YOLOv8, utilizing Ultralytics embedded object tracking, and state estimation of tracked objects through Kalman filters. Moreover, a novel heuristic clustering is employed to facilitate active avoidance of multiple closely positioned objects with similar velocities, creating sets of unsafe spaces for the Nonlinear Model Predictive Controller (NMPC) to navigate around. The NMPC identifies the most hazardous unsafe space, considering not only their current positions but also their predicted future locations. In the sequel, the NMPC calculates maneuvers to guide the robot along a path planned by D+^{*}_{+} towards its intended destination, while maintaining a safe distance to all identified obstacles. The efficacy of the novelly suggested DTAA framework is being validated by Real-life experiments featuring a Boston Dynamics Spot robot that demonstrates the robot's capability to consistently maintain a safe distance from humans in dynamic subterranean, urban indoor, and outdoor environments.
We introduce a novel writing method called Probing Chain-of-Thought (ProCoT), which potentially prevents students from cheating using a Large Language Model (LLM), such as ChatGPT, while enhancing their active learning. LLMs have disrupted education and many other fields. For fear of students cheating, many have resorted to banning their use. These LLMs are also known for hallucinations. We conduct studies with ProCoT in two different courses with 65 students. The students in each course were asked to prompt an LLM of their choice with one question from a set of four and required to affirm or refute statements in the LLM output by using peer-reviewed references. The results show two things: (1) ProCoT stimulates creative/critical thinking and writing of students through engagement with LLMs when we compare the LLM-only output to ProCoT output and (2) ProCoT can prevent cheating because of clear limitations in existing LLMs, particularly ChatGPT, when we compare students' ProCoT output to LLM ProCoT output. We also discover that most students prefer to give answers in fewer words than LLMs, which are typically verbose. The average word counts for students in the first course, ChatGPT (v3.5), and Phind (v8) are 208, 391 and 383, respectively.
Autonomous navigation in unknown environments is a fundamental challenge in robotics, particularly in coordinating ground and aerial robots to maximize exploration efficiency. This paper presents a novel approach that utilizes a hierarchical graph to represent the environment, encoding both geometric and semantic traversability. The framework enables the robots to compute a shared confidence metric, which helps the ground robot assess terrain and determine when deploying the aerial robot will extend exploration. The robot's confidence in traversing a path is based on factors such as predicted volumetric gain, path traversability, and collision risk. A hierarchy of graphs is used to maintain an efficient representation of traversability and frontier information through multi-resolution maps. Evaluated in a real subterranean exploration scenario, the approach allows the ground robot to autonomously identify zones that are no longer traversable but suitable for aerial deployment. By leveraging this hierarchical structure, the ground robot can selectively share graph information on confidence-assessed frontier targets from parts of the scene, enabling the aerial robot to navigate beyond obstacles and continue exploration.
We introduce Instruction Document Visual Question Answering (iDocVQA) dataset and Large Language Document (LLaDoc) model, for training Language-Vision (LV) models for document analysis and predictions on document images, respectively. Usually, deep neural networks for the DocVQA task are trained on datasets lacking instructions. We show that using instruction-following datasets improves performance. We compare performance across document-related datasets using the recent state-of-the-art (SotA) Large Language and Vision Assistant (LLaVA)1.5 as the base model. We also evaluate the performance of the derived models for object hallucination using the Polling-based Object Probing Evaluation (POPE) dataset. The results show that instruction-tuning performance ranges from 11X to 32X of zero-shot performance and from 0.1% to 4.2% over non-instruction (traditional task) finetuning. Despite the gains, these still fall short of human performance (94.36%), implying there's much room for improvement.
Researchers introduce A*+T, a distributed multi-agent pathfinding algorithm that extends A* with time-dependent and risk-aware components. This approach enables robots to navigate safely in dynamic environments by incorporating continuous-time planning, comprehensive risk assessment, and robust handling of both cooperative agents and non-cooperative dynamic obstacles.
· +1
We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.
Collaborative multi-agent exploration of unknown environments is crucial for search and rescue operations. Effective real-world deployment must address challenges such as limited inter-agent communication and static and dynamic obstacles. This paper introduces a novel decentralized collaborative framework based on Reinforcement Learning to enhance multi-agent exploration in unknown environments. Our approach enables agents to decide their next action using an agent-centered field-of-view occupancy grid, and features extracted from A\text{A}^* algorithm-based trajectories to frontiers in the reconstructed global map. Furthermore, we propose a constrained communication scheme that enables agents to share their environmental knowledge efficiently, minimizing exploration redundancy. The decentralized nature of our framework ensures that each agent operates autonomously, while contributing to a collective exploration mission. Extensive simulations in Gymnasium and real-world experiments demonstrate the robustness and effectiveness of our system, while all the results highlight the benefits of combining autonomous exploration with inter-agent map sharing, advancing the development of scalable and resilient robotic exploration systems.
There are no more papers matching your filters at the moment.