ecom Paris
·
Researchers from Kyung Hee University, Adobe Research, Chung-Ang University, and Télécom Paris introduce Iterative Implicit Neural Representations (I-INRs), a plug-and-play framework that enhances existing Implicit Neural Representations (INRs) by incorporating an iterative refinement process. The method effectively mitigates spectral bias and improves noise robustness, achieving superior signal reconstruction quality across various tasks with minimal additional computational overhead.
1
Neural network compression techniques have become increasingly popular as they can drastically reduce the storage and computation requirements for very large networks. Recent empirical studies have illustrated that even simple pruning strategies can be surprisingly effective, and several theoretical studies have shown that compressible networks (in specific senses) should achieve a low generalization error. Yet, a theoretical characterization of the underlying cause that makes the networks amenable to such simple compression schemes is still missing. In this study, we address this fundamental question and reveal that the dynamics of the training algorithm has a key role in obtaining such compressible networks. Focusing our attention on stochastic gradient descent (SGD), our main contribution is to link compressibility to two recently established properties of SGD: (i) as the network size goes to infinity, the system can converge to a mean-field limit, where the network weights behave independently, (ii) for a large step-size/batch-size ratio, the SGD iterates can converge to a heavy-tailed stationary distribution. In the case where these two phenomena occur simultaneously, we prove that the networks are guaranteed to be 'p\ell_p-compressible', and the compression errors of different pruning techniques (magnitude, singular value, or node pruning) become arbitrarily small as the network size increases. We further prove generalization bounds adapted to our theoretical framework, which indeed confirm that the generalization error will be lower for more compressible networks. Our theory and numerical study on various neural networks show that large step-size/batch-size ratios introduce heavy-tails, which, in combination with overparametrization, result in compressibility.
In recent years, the application of Deep Learning techniques has shown remarkable success in various computer vision tasks, paving the way for their deployment in extraterrestrial exploration. Transfer learning has emerged as a powerful strategy for addressing the scarcity of labeled data in these novel environments. This paper represents one of the first efforts in evaluating the feasibility of employing adapters toward efficient transfer learning for rock segmentation in extraterrestrial landscapes, mainly focusing on lunar and martian terrains. Our work suggests that the use of adapters, strategically integrated into a pre-trained backbone model, can be successful in reducing both bandwidth and memory requirements for the target extraterrestrial device. In this study, we considered two memory-saving strategies: layer fusion (to reduce to zero the inference overhead) and an ``adapter ranking'' (to also reduce the transmission cost). Finally, we evaluate these results in terms of task performance, memory, and computation on embedded devices, evidencing trade-offs that open the road to more research in the field.
Multi-Agent Systems (MAS) are notoriously complex and hard to verify. In fact, it is not trivial to model a MAS, and even when a model is built, it is not always possible to verify, in a formal way, that it is actually behaving as we expect. Usually, it is relevant to know whether an agent is capable of fulfilling its own goals. One possible way to check this is through Model Checking. Specifically, by verifying Alternating-time Temporal Logic (ATL) properties, where the notion of strategies for achieving goals can be described. Unfortunately, the resulting model checking problem is not decidable in general. In this paper, we present a verification procedure based on combining Model Checking and Runtime Verification, where sub-models of the MAS model belonging to decidable fragments are verified by a model checker, and runtime monitors are used to verify the rest. Furthermore, we implement our technique and show experimental results.
Current quantum machine learning approaches often face challenges balancing predictive accuracy, robustness, and interpretability. To address this, we propose a novel quantum adversarial framework that integrates a hybrid quantum neural network (QNN) with classical deep learning layers, guided by an evaluator model with LIME-based interpretability, and extended through quantum GAN and self-supervised variants. In the proposed model, an adversarial evaluator concurrently guides the QNN by computing feedback loss, thereby optimizing both prediction accuracy and model explainability. Empirical evaluations show that the Vanilla model achieves RMSE = 0.27, MSE = 0.071, MAE = 0.21, and R^2 = 0.59, delivering the most consistent performance across regression metrics compared to adversarial counterparts. These results demonstrate the potential of combining quantum-inspired methods with classical architectures to develop lightweight, high-performance, and interpretable predictive models, advancing the applicability of QML beyond current limitations.
Influenced by the field of Computer Vision, Generative Adversarial Networks (GANs) are often adopted for the audio domain using fixed-size two-dimensional spectrogram representations as the "image data". However, in the (musical) audio domain, it is often desired to generate output of variable duration. This paper presents VQCPC-GAN, an adversarial framework for synthesizing variable-length audio by exploiting Vector-Quantized Contrastive Predictive Coding (VQCPC). A sequence of VQCPC tokens extracted from real audio data serves as conditional input to a GAN architecture, providing step-wise time-dependent features of the generated content. The input noise z (characteristic in adversarial architectures) remains fixed over time, ensuring temporal consistency of global features. We evaluate the proposed model by comparing a diverse set of metrics against various strong baselines. Results show that, even though the baselines score best, VQCPC-GAN achieves comparable performance even when generating variable-length audio. Numerous sound examples are provided in the accompanying website, and we release the code for reproducibility.
14
SELeCT introduces a probabilistic framework for adaptive learning in data streams, designed to continuously assess the relevance of all encountered concepts and ensure stable transitions. The approach yields C-F1 scores up to 63% higher and Kappa accuracy improvements of up to 0.15 compared to existing methods, effectively tracking changing and recurring concepts.
There are no more papers matching your filters at the moment.