Machine learning (ML) offers a powerful path toward discovering sustainable polymer materials, but progress has been limited by the lack of large, high-quality, and openly accessible polymer datasets. The Open Polymer Challenge (OPC) addresses this gap by releasing the first community-developed benchmark for polymer informatics, featuring a dataset with 10K polymers and 5 properties: thermal conductivity, radius of gyration, density, fractional free volume, and glass transition temperature. The challenge centers on multi-task polymer property prediction, a core step in virtual screening pipelines for materials discovery. Participants developed models under realistic constraints that include small data, label imbalance, and heterogeneous simulation sources, using techniques such as feature-based augmentation, transfer learning, self-supervised pretraining, and targeted ensemble strategies. The competition also revealed important lessons about data preparation, distribution shifts, and cross-group simulation consistency, informing best practices for future large-scale polymer datasets. The resulting models, analysis, and released data create a new foundation for molecular AI in polymer science and are expected to accelerate the development of sustainable and energy-efficient materials. Along with the competition, we release the test dataset at this https URL. We also release the data generation pipeline at this https URL, which simulates more than 25 properties, including thermal conductivity, radius of gyration, and density.