Singapore Institute of Manufacturing Technology
Efficient and accurate extraction of key information from 2D engineering drawings is essential for advancing digital manufacturing workflows. Such information includes geometric dimensioning and tolerancing (GD&T), measures, material specifications, and textual annotations. Manual extraction is slow and labor-intensive, while generic OCR models often fail due to complex layouts, engineering symbols, and rotated text, leading to incomplete and unreliable outputs. These limitations result in incomplete and unreliable outputs. To address these challenges, we propose a hybrid vision-language framework that integrates a rotation-aware object detection model (YOLOv11-obb) with a transformer-based vision-language parser. Our structured pipeline applies YOLOv11-OBB to localize annotations and extract oriented bounding box (OBB) patches, which are then parsed into structured outputs using a fine-tuned, lightweight vision-language model (VLM). We curate a dataset of 1,367 2D mechanical drawings annotated across nine key categories. YOLOv11-OBB is trained on this dataset to detect OBBs and extract annotation patches. These are parsed using two open-source VLMs: Donut and Florence-2. Both models are lightweight and well-suited for specialized industrial tasks under limited computational overhead. Following fine-tuning of both models on the curated dataset of image patches paired with structured annotation labels, a comparative experiment is conducted to evaluate parsing performance across four key metrics. Donut outperforms Florence-2, achieving 88.5% precision, 99.2% recall, and a 93.5% F1-score, with a hallucination rate of 11.5%. Finally, a case study demonstrates how the extracted structured information supports downstream manufacturing tasks such as process and tool selection, showcasing the practical utility of the proposed framework in modernizing 2D drawing interpretation.
The MVMoE framework introduces a Mixture-of-Experts (MoE) architecture to neural Vehicle Routing Problem (VRP) solvers, enabling a single model to tackle 16 VRP variants simultaneously. This approach improves zero-shot generalization on unseen VRP configurations and efficiently enhances model capacity compared to dense multi-task models.
59
We present NeuroLKH, a novel algorithm that combines deep learning with the strong traditional heuristic Lin-Kernighan-Helsgaun (LKH) for solving Traveling Salesman Problem. Specifically, we train a Sparse Graph Network (SGN) with supervised learning for edge scores and unsupervised learning for node penalties, both of which are critical for improving the performance of LKH. Based on the output of SGN, NeuroLKH creates the edge candidate set and transforms edge distances to guide the searching process of LKH. Extensive experiments firmly demonstrate that, by training one model on a wide range of problem sizes, NeuroLKH significantly outperforms LKH and generalizes well to much larger sizes. Also, we show that NeuroLKH can be applied to other routing problems such as Capacitated Vehicle Routing Problem (CVRP), Pickup and Delivery Problem (PDP), and CVRP with Time Windows (CVRPTW).
Researchers from SIMTech, ARTC, and NTU developed a system that achieves 96.87% accuracy in recognizing 29 distinct hybrid additive-subtractive manufacturing features from CAD models. This system additionally extracts precise geometric dimensions, orientations, and stock sizes with 100% accuracy for identified features using PyOCC-based scripts.
Genetic programming (GP) has demonstrated strong effectiveness in evolving tree-structured heuristics for complex optimization problems. Yet, in dynamic and large-scale scenarios, the most effective heuristics are often highly complex, hindering interpretability, slowing convergence, and limiting transferability across tasks. To address these challenges, we present EvoSpeak, a novel framework that integrates GP with large language models (LLMs) to enhance the efficiency, transparency, and adaptability of heuristic evolution. EvoSpeak learns from high-quality GP heuristics, extracts knowledge, and leverages this knowledge to (i) generate warm-start populations that accelerate convergence, (ii) translate opaque GP trees into concise natural-language explanations that foster interpretability and trust, and (iii) enable knowledge transfer and preference-aware heuristic generation across related tasks. We verify the effectiveness of EvoSpeak through extensive experiments on dynamic flexible job shop scheduling (DFJSS), under both single- and multi-objective formulations. The results demonstrate that EvoSpeak produces more effective heuristics, improves evolutionary efficiency, and delivers human-readable reports that enhance usability. By coupling the symbolic reasoning power of GP with the interpretative and generative strengths of LLMs, EvoSpeak advances the development of intelligent, transparent, and user-aligned heuristics for real-world optimization problems.
The modeling of dynamical systems is a pervasive concern for not only describing but also predicting and controlling natural phenomena and engineered systems. Current data-driven approaches often assume prior knowledge of the relevant state variables or result in overparameterized state spaces. Boyuan Chen and his co-authors proposed a neural network model that estimates the degrees of freedom and attempts to discover the state variables of a dynamical system. Despite its innovative approach, this baseline model lacks a connection to the physical principles governing the systems it analyzes, leading to unreliable state variables. This research proposes a method that leverages the physical characteristics of second-order Hamiltonian systems to constrain the baseline model. The proposed model outperforms the baseline model in identifying a minimal set of non-redundant and interpretable state variables.
The construction industry faces high risks due to frequent accidents, often leaving workers in perilous situations where rapid response is critical. Traditional safety monitoring methods, including wearable sensors and GPS, often fail under obstructive or indoor conditions. This research introduces a novel real-time scream detection and localization system tailored for construction sites, especially in low-resource environments. Integrating Wav2Vec2 and Enhanced ConvNet models for accurate scream detection, coupled with the GCC-PHAT algorithm for robust time delay estimation under reverberant conditions, followed by a gradient descent-based approach to achieve precise position estimation in noisy environments. Our approach combines these concepts to achieve high detection accuracy and rapid localization, thereby minimizing false alarms and optimizing emergency response. Preliminary results demonstrate that the system not only accurately detects distress calls amidst construction noise but also reliably identifies the caller's location. This solution represents a substantial improvement in worker safety, with the potential for widespread application across high-risk occupational environments. The scripts used for training, evaluation of scream detection, position estimation, and integrated framework will be released at: this https URL.
In this paper, a multi-state diagnosis and prognosis (MDP) framework is proposed for tool condition monitoring via a deep belief network based multi-state approach (DBNMS). For fault diagnosis, a cost-sensitive deep belief network (namely ECS-DBN) is applied to deal with the imbalanced data problem for tool state estimation. An appropriate prognostic degradation model is then applied for tool wear estimation based on the different tool states. The proposed framework has the advantage of automatic feature representation learning and shows better performance in accuracy and robustness. The effectiveness of the proposed DBNMS is validated using a real-world dataset obtained from the gun drilling process. This dataset contains a large amount of measured signals involving different tool geometries under various operating conditions. The DBNMS is examined for both the tool state estimation and tool wear estimation tasks. In the experimental studies, the prediction results are evaluated and compared with popular machine learning approaches, which show the superior performance of the proposed DBNMS approach.
Hamiltonian neural networks (HNNs) are state-of-the-art models that regress the vector field of a dynamical system under the learning bias of Hamilton's equations. A recent observation is that embedding a bias regarding the additive separability of the Hamiltonian reduces the regression complexity and improves regression performance. We propose separable HNNs that embed additive separability within HNNs using observational, learning, and inductive biases. We show that the proposed models are more effective than the HNN at regressing the Hamiltonian and the vector field. Consequently, the proposed models predict the dynamics and conserve the total energy of the Hamiltonian system more accurately.
Unmanned aerial vehicles (UAVs), also known as drones, have emerged as a promising mode of fast, energy-efficient, and cost-effective package delivery. A considerable number of works have studied different aspects of drone package delivery service by a supplier, one of which is delivery planning. However, existing works addressing the planning issues consider a simple case of perfect delivery without service interruption, e.g., due to accident which is common and realistic. Therefore, this paper introduces the joint ground and aerial delivery service optimization and planning (GADOP) framework. The framework explicitly incorporates uncertainty of drone package delivery, i.e., takeoff and breakdown conditions. The GADOP framework aims to minimize the total delivery cost given practical constraints, e.g., traveling distance limit. Specifically, we formulate the GADOP framework as a three-stage stochastic integer programming model. To deal with the high complexity issue of the problem, a decomposition method is adopted. Then, the performance of the GADOP framework is evaluated by using two data sets including Solomon benchmark suite and the real data from one of the Singapore logistics companies. The performance evaluation clearly shows that the GADOP framework can achieve significantly lower total payment than that of the baseline methods which do not take uncertainty into account.
In today's digital world, we are faced with an explosion of data and models produced and manipulated by numerous large-scale cloud-based applications. Under such settings, existing transfer evolutionary optimization frameworks grapple with simultaneously satisfying two important quality attributes, namely (1) scalability against a growing number of source tasks and (2) online learning agility against sparsity of relevant sources to the target task of interest. Satisfying these attributes shall facilitate practical deployment of transfer optimization to scenarios with big task-instances, while curbing the threat of negative transfer. While applications of existing algorithms are limited to tens of source tasks, in this paper, we take a quantum leap forward in enabling more than two orders of magnitude scale-up in the number of tasks; i.e., we efficiently handle scenarios beyond 1000 source task-instances. We devise a novel transfer evolutionary optimization framework comprising two co-evolving species for joint evolutions in the space of source knowledge and in the search space of solutions to the target problem. In particular, co-evolution enables the learned knowledge to be orchestrated on the fly, expediting convergence in the target optimization task. We have conducted an extensive series of experiments across a set of practically motivated discrete and continuous optimization examples comprising a large number of source task-instances, of which only a small fraction indicate source-target relatedness. The experimental results show that not only does our proposed framework scale efficiently with a growing number of source tasks but is also effective in capturing relevant knowledge against sparsity of related sources, fulfilling the two salient features of scalability and online learning agility.
SAFECTRLBO, a new algorithm for safe Bayesian Optimization, integrates additive Gaussian processes with a simplified safe exploration strategy to efficiently tune complex control systems in moderate dimensions. Applied to a Permanent Magnet Synchronous Motor (PMSM) system, it achieved the best performance with a 0.956 rad/s overshoot and 0.284 s 2% settling time, while reducing computational time per iteration to 28 seconds.
Graph-based recommendation models work well for top-N recommender systems due to their capability to capture the potential relationships between entities. However, most of the existing methods only construct a single global item graph shared by all the users and regrettably ignore the diverse tastes between different user groups. Inspired by the success of local models for recommendation, this paper provides the first attempt to investigate multiple local item graphs along with a global item graph for graph-based recommendation models. We argue that recommendation on global and local graphs outperforms that on a single global graph or multiple local graphs. Specifically, we propose a novel graph-based recommendation model named GLIMG (Global and Local IteM Graphs), which simultaneously captures both the global and local user tastes. By integrating the global and local graphs into an adapted semi-supervised learning model, users' preferences on items are propagated globally and locally. Extensive experimental results on real-world datasets show that our proposed method consistently outperforms the state-of-the art counterparts on the top-N recommendation task.
Real-world optimization often demands diverse, high-quality solutions. Quality-Diversity (QD) optimization is a multifaceted approach in evolutionary algorithms that aims to generate a set of solutions that are both high-performing and diverse. QD algorithms have been successfully applied across various domains, providing robust solutions by exploring diverse behavioral niches. However, their application has primarily focused on static problems, with limited exploration in the context of dynamic combinatorial optimization problems. Furthermore, the theoretical understanding of QD algorithms remains underdeveloped, particularly when applied to learning heuristics instead of directly learning solutions in complex and dynamic combinatorial optimization domains, which introduces additional challenges. This paper introduces a novel QD framework for dynamic scheduling problems. We propose a map-building strategy that visualizes the solution space by linking heuristic genotypes to their behaviors, enabling their representation on a QD map. This map facilitates the discovery and maintenance of diverse scheduling heuristics. Additionally, we conduct experiments on both fixed and dynamically changing training instances to demonstrate how the map evolves and how the distribution of solutions unfolds over time. We also discuss potential future research directions that could enhance the learning process and broaden the applicability of QD algorithms to dynamic combinatorial optimization challenges.
A symmetrically-buckled arch whose boundaries are clamped at an angle has two stable equilibria: an inverted and a natural state. When the distance between the clamps is increased (i.e. the confinement is decreased) the system snaps from the inverted to the natural state. Depending on the rate at which the confinement is decreased ('unloading'), the symmetry of the system during snap-through may change: slow unloading results in snap-through occurring asymmetrically, while fast unloading results in a symmetric snap-through. It has recently been shown [Wang et al., Phys. Rev. Lett. 132, 267201 (2024)] that the transient asymmetry at slow unloading rates is the result of the amplification of small asymmetric precursor oscillations (shape perturbations) introduced dynamically to the system, even when the system itself is perfectly symmetric. In reality, however, imperfections, such as small asymmetries in the boundary conditions, are present too. Using numerical simulations and a simple toy model, we discuss the relative importance of intrinsic imperfections and initial asymmetric shape perturbations in determining the transient asymmetry observed. We show that, for small initial perturbations, the magnitude of the asymmetry grows in proportion to the size of the intrinsic imperfection but that, when initial shape perturbations are large, intrinsic imperfections are unimportant - the asymmetry of the system is dominated by the transient amplification of the initial asymmetric shape perturbations. We also show that the dominant origin of asymmetry changes the way that asymmetry grows dynamically. Our results may guide engineering and design of snapping beams used to control insect-sized jumping robots.
Representation learning-based recommendation models play a dominant role among recommendation techniques. However, most of the existing methods assume both historical interactions and embedding dimensions are independent of each other, and thus regrettably ignore the high-order interaction information among historical interactions and embedding dimensions. In this paper, we propose a novel representation learning-based model called COMET (COnvolutional diMEnsion inTeraction), which simultaneously models the high-order interaction patterns among historical interactions and embedding dimensions. To be specific, COMET stacks the embeddings of historical interactions horizontally at first, which results in two "embedding maps". In this way, internal interactions and dimensional interactions can be exploited by convolutional neural networks (CNN) with kernels of different sizes simultaneously. A fully-connected multi-layer perceptron (MLP) is then applied to obtain two interaction vectors. Lastly, the representations of users and items are enriched by the learnt interaction vectors, which can further be used to produce the final prediction. Extensive experiments and ablation studies on various public implicit feedback datasets clearly demonstrate the effectiveness and rationality of our proposed method.
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime. This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions. Our approach employs the Transformer model to effectively capture complex temporal patterns in sensor data, thereby accurately predicting the remaining useful life (RUL) of an equipment. Additionally, the DRL component of our framework provides cost-effective and timely maintenance recommendations. We validate the efficacy of our framework on the NASA C-MPASS dataset, where it demonstrates significant advancements in both RUL prediction accuracy and the optimization of maintenance actions, compared to the other prevalent machine learning-based methods. Our proposed approach provides an innovative data-driven framework for industry machine systems, accurately forecasting equipment lifespans and optimizing maintenance schedules, thereby reducing downtime and cutting costs.
Real-world optimization often demands diverse, high-quality solutions. Quality-Diversity (QD) optimization is a multifaceted approach in evolutionary algorithms that aims to generate a set of solutions that are both high-performing and diverse. QD algorithms have been successfully applied across various domains, providing robust solutions by exploring diverse behavioral niches. However, their application has primarily focused on static problems, with limited exploration in the context of dynamic combinatorial optimization problems. Furthermore, the theoretical understanding of QD algorithms remains underdeveloped, particularly when applied to learning heuristics instead of directly learning solutions in complex and dynamic combinatorial optimization domains, which introduces additional challenges. This paper introduces a novel QD framework for dynamic scheduling problems. We propose a map-building strategy that visualizes the solution space by linking heuristic genotypes to their behaviors, enabling their representation on a QD map. This map facilitates the discovery and maintenance of diverse scheduling heuristics. Additionally, we conduct experiments on both fixed and dynamically changing training instances to demonstrate how the map evolves and how the distribution of solutions unfolds over time. We also discuss potential future research directions that could enhance the learning process and broaden the applicability of QD algorithms to dynamic combinatorial optimization challenges.
The paper offers a comprehensive analysis of social networks among movie actors and directors in the film industry. Utilizing data from IMDb and Netflix, we leverage Python and NetworkX to uncover valuable insights into the movie industry's intricate web of collaborations. Key findings include identifying the top actors and directors in the OTT sector, tracking the rise of movies on OTT platforms, and analyzing centrality measures for actors. We also explore the hidden patterns within the movie data, unveiling the shortest paths between actors and predicting future collaborations. Cluster analysis categorizes movies based on various criteria, revealing the most insular and liberal clusters and identifying crossover actors bridging different segments of the industry. The study highlights that actors predominantly collaborate within language groups, transcending national boundaries. We investigate the degree of isolation of Bollywood from global cinema and identify actors working across world clusters. The project provides valuable insights into the evolving dynamics of the film industry and the impact of OTT platforms, benefiting industry professionals, scholars, and enthusiasts.
In this paper, we propose an orthogonal frequency division multiplexing (OFDM)-based generalized optical quadrature spatial modulation (GOQSM) technique for multiple-input multiple-output optical wireless communication (MIMO-OWC) systems. Considering the error propagation and noise amplification effects when applying maximum likelihood and maximum ratio combining (ML-MRC)-based detection, we further propose a deep neural network (DNN)-aided detection for OFDM-based GOQSM systems. The proposed DNN-aided detection scheme performs the GOQSM detection in a joint manner, which can efficiently eliminate the adverse effects of both error propagation and noise amplification. The obtained simulation results successfully verify the superiority of the deep learning-aided OFDM-based GOQSM technique for high-speed MIMO-OWC systems.
There are no more papers matching your filters at the moment.