federated-learning
LLM agents are widely deployed in complex interactive tasks, yet privacy constraints often preclude centralized optimization and co-evolution across dynamic environments. While Federated Learning (FL) has proven effective on static datasets, its extension to the open-ended self-evolution of agents remains underexplored. Directly applying standard FL is challenging: heterogeneous tasks and sparse, trajectory-level rewards introduce severe gradient conflicts, destabilizing the global optimization process. To bridge this gap, we propose Fed-SE, a Federated Self-Evolution framework for LLM agents. Fed-SE establishes a local evolution-global aggregation paradigm. Locally, agents employ parameter-efficient fine-tuning on filtered, high-return trajectories to achieve stable gradient updates. Globally, Fed-SE aggregates updates within a low-rank subspace that disentangles environment-specific dynamics, effectively reducing negative transfer across clients. Experiments across five heterogeneous environments demonstrate that Fed-SE improves average task success rates by approximately 18% over federated baselines, validating its effectiveness in robust cross-environment knowledge transfer in privacy-constrained deployments.
This paper addresses the challenge of aligning large language models (LLMs) with diverse human preferences within federated learning (FL) environments, where standard methods often fail to adequately represent diverse viewpoints. We introduce a comprehensive evaluation framework that systematically assesses the trade-off between alignment quality and fairness when using different aggregation strategies for human preferences. In our federated setting, each group locally evaluates rollouts and produces reward signals, and the server aggregates these group-level rewards without accessing any raw data. Specifically, we evaluate standard reward aggregation techniques (min, max, and average) and introduce a novel adaptive scheme that dynamically adjusts preference weights based on a group's historical alignment performance. Our experiments on question-answering (Q/A) tasks using a PPO-based RLHF pipeline demonstrate that our adaptive approach consistently achieves superior fairness while maintaining competitive alignment scores. This work offers a robust methodology for evaluating LLM behavior across diverse populations and provides a practical solution for developing truly pluralistic and fairly aligned models.
Developing generalizable AI for medical imaging requires both access to large, multi-center datasets and standardized, reproducible tooling within research environments. However, leveraging real-world imaging data in clinical research environments is still hampered by strict regulatory constraints, fragmented software infrastructure, and the challenges inherent in conducting large-cohort multicentre studies. This leads to projects that rely on ad-hoc toolchains that are hard to reproduce, difficult to scale beyond single institutions and poorly suited for collaboration between clinicians and data scientists. We present Kaapana, a comprehensive open-source platform for medical imaging research that is designed to bridge this gap. Rather than building single-use, site-specific tooling, Kaapana provides a modular, extensible framework that unifies data ingestion, cohort curation, processing workflows and result inspection under a common user interface. By bringing the algorithm to the data, it enables institutions to keep control over their sensitive data while still participating in distributed experimentation and model development. By integrating flexible workflow orchestration with user-facing applications for researchers, Kaapana reduces technical overhead, improves reproducibility and enables conducting large-scale, collaborative, multi-centre imaging studies. We describe the core concepts of the platform and illustrate how they can support diverse use cases, from local prototyping to nation-wide research networks. The open-source codebase is available at this https URL
The rise of space AI is reshaping government and industry through applications such as disaster detection, border surveillance, and climate monitoring, powered by massive data from commercial and governmental low Earth orbit (LEO) satellites. Federated satellite learning (FSL) enables joint model training without sharing raw data, but suffers from slow convergence due to intermittent connectivity and introduces critical trust challenges--where biased or falsified updates can arise across satellite constellations, including those injected through cyberattacks on inter-satellite or satellite-ground communication links. We propose OrbitChain, a blockchain-backed framework that empowers trustworthy multi-vendor collaboration in LEO networks. OrbitChain (i) offloads consensus to high-altitude platforms (HAPs) with greater computational capacity, (ii) ensures transparent, auditable provenance of model updates from different orbits owned by different vendors, and (iii) prevents manipulated or incomplete contributions from affecting global FSL model aggregation. Extensive simulations show that OrbitChain reduces computational and communication overhead while improving privacy, security, and global model accuracy. Its permissioned proof-of-authority ledger finalizes over 1000 blocks with sub-second latency (0.16,s, 0.26,s, 0.35,s for 1-of-5, 3-of-5, and 5-of-5 quorums). Moreover, OrbitChain reduces convergence time by up to 30 hours on real satellite datasets compared to single-vendor, demonstrating its effectiveness for real-time, multi-vendor learning. Our code is available at this https URL
Voice authentication systems deployed at the network edge face dual threats: a) sophisticated deepfake synthesis attacks and b) control-plane poisoning in distributed federated learning protocols. We present a framework coupling physics-guided deepfake detection with uncertainty-aware in edge learning. The framework fuses interpretable physics features modeling vocal tract dynamics with representations coming from a self-supervised learning module. The representations are then processed via a Multi-Modal Ensemble Architecture, followed by a Bayesian ensemble providing uncertainty estimates. Incorporating physics-based characteristics evaluations and uncertainty estimates of audio samples allows our proposed framework to remain robust to both advanced deepfake attacks and sophisticated control-plane poisoning, addressing the complete threat model for networked voice authentication.
Different federated optimization algorithms typically employ distinct client-selection strategies: some methods communicate only with a randomly sampled subset of clients at each round, while others need to periodically communicate with all clients or use a hybrid scheme that combines both strategies. However, existing metrics for comparing optimization methods typically do not distinguish between these strategies, which often incur different communication costs in practice. To address this disparity, we introduce a simple and natural model of federated optimization that quantifies communication and local computation complexities. This new model allows for several commonly used client-selection strategies and explicitly associates each with a distinct cost. Within this setting, we propose a new algorithm that achieves the best-known communication and local complexities among existing federated optimization methods for non-convex optimization. This algorithm is based on the inexact composite gradient method with a carefully constructed gradient estimator and a special procedure for solving the auxiliary subproblem at each iteration. The gradient estimator is based on SAGA, a popular variance-reduced gradient estimator. We first derive a new variance bound for it, showing that SAGA can exploit functional similarity. We then introduce the Recursive-Gradient technique as a general way to potentially improve the error bound of a given conditionally unbiased gradient estimator, including both SAGA and SVRG. By applying this technique to SAGA, we obtain a new estimator, RG-SAGA, which has an improved error bound compared to the original one.
Traditional Federated Multi-View Clustering assumes uniform views across clients, yet practical deployments reveal heterogeneous view completeness with prevalent incomplete, redundant, or corrupted data. While recent approaches model view heterogeneity, they neglect semantic conflicts from dynamic view combinations, failing to address dual uncertainties: view uncertainty (semantic inconsistency from arbitrary view pairings) and aggregation uncertainty (divergent client updates with imbalanced contributions). To address these, we propose a novel Enhanced Federated Deep Multi-View Clustering framework: first align local semantics, hierarchical contrastive fusion within clients resolves view uncertainty by eliminating semantic conflicts; a view adaptive drift module mitigates aggregation uncertainty through global-local prototype contrast that dynamically corrects parameter deviations; and a balanced aggregation mechanism coordinates client updates. Experimental results demonstrate that EFDMVC achieves superior robustness against heterogeneous uncertain views across multiple benchmark datasets, consistently outperforming all state-of-the-art baselines in comprehensive evaluations.
FedRevive is an asynchronous federated learning framework that leverages a server-side, data-free knowledge distillation (DFKD) mechanism to effectively address the issue of stale client updates. It achieves up to 21.0% faster time-to-target accuracy and higher final model performance compared to existing asynchronous FL baselines across various vision and text classification tasks.
Personalized federated learning (PFL) addresses a critical challenge of collaboratively training customized models for clients with heterogeneous and scarce local data. Conventional federated learning, which relies on a single consensus model, proves inadequate under such data heterogeneity. Its standard aggregation method of weighting client updates heuristically or by data volume, operates under an equal-contribution assumption, failing to account for the actual utility and reliability of each client's update. This often results in suboptimal personalization and aggregation bias. To overcome these limitations, we introduce Contribution-Oriented PFL (CO-PFL), a novel algorithm that dynamically estimates each client's contribution for global aggregation. CO-PFL performs a joint assessment by analyzing both gradient direction discrepancies and prediction deviations, leveraging information from gradient and data subspaces. This dual-subspace analysis provides a principled and discriminative aggregation weight for each client, emphasizing high-quality updates. Furthermore, to bolster personalization adaptability and optimization stability, CO-PFL cohesively integrates a parameter-wise personalization mechanism with mask-aware momentum optimization. Our approach effectively mitigates aggregation bias, strengthens global coordination, and enhances local performance by facilitating the construction of tailored submodels with stable updates. Extensive experiments on four benchmark datasets (CIFAR10, CIFAR10C, CINIC10, and Mini-ImageNet) confirm that CO-PFL consistently surpasses state-of-the-art methods in in personalization accuracy, robustness, scalability and convergence stability.
Recent advancements in artificial intelligence (AI), particularly foundation models (FMs), have revolutionized medical image analysis, demonstrating strong zero- and few-shot performance across diverse medical imaging tasks, from segmentation to report generation. Unlike traditional task-specific AI models, FMs leverage large corpora of labeled and unlabeled multimodal datasets to learn generalized representations that can be adapted to various downstream clinical applications with minimal fine-tuning. However, despite the rapid proliferation of FM research in medical imaging, the field remains fragmented, lacking a unified synthesis that systematically maps the evolution of architectures, training paradigms, and clinical applications across modalities. To address this gap, this review article provides a comprehensive and structured analysis of FMs in medical image analysis. We systematically categorize studies into vision-only and vision-language FMs based on their architectural foundations, training strategies, and downstream clinical tasks. Additionally, a quantitative meta-analysis of the studies was conducted to characterize temporal trends in dataset utilization and application domains. We also critically discuss persistent challenges, including domain adaptation, efficient fine-tuning, computational constraints, and interpretability along with emerging solutions such as federated learning, knowledge distillation, and advanced prompting. Finally, we identify key future research directions aimed at enhancing the robustness, explainability, and clinical integration of FMs, thereby accelerating their translation into real-world medical practice.
Differentially private (DP) decentralized Federated Learning (FL) allows local users to collaborate without sharing their data with a central server. However, accurately quantifying the privacy budget of private FL algorithms is challenging due to the co-existence of complex algorithmic components such as decentralized communication and local updates. This paper addresses privacy accounting for two decentralized FL algorithms within the ff-differential privacy (ff-DP) framework. We develop two new ff-DP-based accounting methods tailored to decentralized settings: Pairwise Network ff-DP (PN-ff-DP), which quantifies privacy leakage between user pairs under random-walk communication, and Secret-based ff-Local DP (Sec-ff-LDP), which supports structured noise injection via shared secrets. By combining tools from ff-DP theory and Markov chain concentration, our accounting framework captures privacy amplification arising from sparse communication, local iterations, and correlated noise. Experiments on synthetic and real datasets demonstrate that our methods yield consistently tighter (ϵ,δ)(\epsilon,\delta) bounds and improved utility compared to Rényi DP-based approaches, illustrating the benefits of ff-DP in decentralized privacy accounting.
1
Federated efficient fine-tuning has emerged as an approach that leverages distributed data and computational resources across nodes to address the challenges of large-scale fine-tuning and privacy preservation. The Low-Rank Adaptation (LoRA) enables efficient fine-tuning of large-scale pre-trained models by introducing trainable low-rank matrices into weight this http URL, in heterogeneous data scenarios, client drift weakens the generalization of the global model, and local models often fail to meet the personalized needs of individual this http URL, existing federated LoRA efficient fine-tuning techniques overlook fine-grained analysis of the tuning matrices. To address this, we conducted preliminary experiments and found that different LoRA matrices exhibit different sensitivity to changes in the direction and magnitude of their this http URL thus propose a fine-grained federated LoRA tuning method. By fine-tuning the more sensitive directional vectors in the A matrix, which encode shared knowledge, our method learns shared features more effectively across clients and enhances global generalization. Simultaneously, by fine-tuning the more sensitive magnitude vectors in the B matrix, which encode personalized knowledge, our method better captures personalized knowledge, enabling detailed adaptation to local data. The method uses a pipeline combining global and local optimizers. Global optimization further improves local models, achieving collaborative optimization between global and local levels. This improves both the generalization ability of the global model and the personalized adaptation of local models under heterogeneous data scenarios. Experiments on Databricks-Dolly-15k and Natural Instructions with LLaMA2-7B and Deepseek-7B confirm that our method improves global performance by 0.39% and local performance by 0.59%.
Machine unlearning is critical for enforcing data deletion rights like the "right to be forgotten." As a decentralized paradigm, Federated Learning (FL) also requires unlearning, but realistic implementations face two major challenges. First, fairness in Federated Unlearning (FU) is often overlooked. Exact unlearning methods typically force all clients into costly retraining, even those uninvolved. Approximate approaches, using gradient ascent or distillation, make coarse interventions that can unfairly degrade performance for clients with only retained data. Second, most FU evaluations rely on synthetic data assumptions (IID/non-IID) that ignore real-world heterogeneity. These unrealistic benchmarks obscure the true impact of unlearning and limit the applicability of current methods. We first conduct a comprehensive benchmark of existing FU methods under realistic data heterogeneity and fairness conditions. We then propose a novel, fairness-aware FU approach, Federated Cross-Client-Constrains Unlearning (FedCCCU), to explicitly address both challenges. FedCCCU offers a practical and scalable solution for real-world FU. Experimental results show that existing methods perform poorly in realistic settings, while our approach consistently outperforms them.
The agricultural sector is undergoing a transformation with the integration of advanced technologies, particularly in data-driven decision-making. This work proposes a federated learning framework for smart farming, aiming to develop a scalable, efficient, and secure solution for crop disease detection tailored to the environmental and operational conditions of Minnesota farms. By maintaining sensitive farm data locally and enabling collaborative model updates, our proposed framework seeks to achieve high accuracy in crop disease classification without compromising data privacy. We outline a methodology involving data collection from Minnesota farms, application of local deep learning algorithms, transfer learning, and a central aggregation server for model refinement, aiming to achieve improved accuracy in disease detection, good generalization across agricultural scenarios, lower costs in communication and training time, and earlier identification and intervention against diseases in future implementations. We outline a methodology and anticipated outcomes, setting the stage for empirical validation in subsequent studies. This work comes in a context where more and more demand for data-driven interpretations in agriculture has to be weighed with concerns about privacy from farms that are hesitant to share their operational data. This will be important to provide a secure and efficient disease detection method that can finally revolutionize smart farming systems and solve local agricultural problems with data confidentiality. In doing so, this paper bridges the gap between advanced machine learning techniques and the practical, privacy-sensitive needs of farmers in Minnesota and beyond, leveraging the benefits of federated learning.
Redefining Federated Learning as a strategic system, this research quantifies client incentive-driven manipulation ("metric gaming") using the Manipulability Index (M) and Price of Gaming (PoG). It proposes an integrated design framework of rewards, audits, and information mechanisms to realign incentives, fostering stable cooperation and reducing collective welfare loss.
An analysis of the shifting landscape of AI training, informed by recent low-communication algorithms, distinguishes between distributed and decentralized paradigms to highlight emerging governance challenges. The work identifies increased risks of capability proliferation and compute structuring due to these shifts, while also acknowledging potential benefits for democratizing AI access.
Surgical instrument segmentation under Federated Learning (FL) is a promising direction, which enables multiple surgical sites to collaboratively train the model without centralizing datasets. However, there exist very limited FL works in surgical data science, and FL methods for other modalities do not consider inherent characteristics in surgical domain: i) different scenarios show diverse anatomical backgrounds while highly similar instrument representation; ii) there exist surgical simulators which promote large-scale synthetic data generation with minimal efforts. In this paper, we propose a novel Personalized FL scheme, Spatio-Temporal Representation Decoupling and Enhancement (FedST), which wisely leverages surgical domain knowledge during both local-site and global-server training to boost segmentation. Concretely, our model embraces a Representation Separation and Cooperation (RSC) mechanism in local-site training, which decouples the query embedding layer to be trained privately, to encode respective backgrounds. Meanwhile, other parameters are optimized globally to capture the consistent representations of instruments, including the temporal layer to capture similar motion patterns. A textual-guided channel selection is further designed to highlight site-specific features, facilitating model adapta tion to each site. Moreover, in global-server training, we propose Synthesis-based Explicit Representation Quantification (SERQ), which defines an explicit representation target based on synthetic data to synchronize the model convergence during fusion for improving model generalization.
Researchers from Western University, Jilin University, McGill University, and the Vector Institute developed FedOne, a federated learning framework for black-box discrete prompt learning that significantly reduces query costs to cloud-based large language models. The framework achieved competitive accuracy on NLP tasks while demonstrating optimal query efficiency by activating only one client per round, alongside providing the first convergence analysis for this setting.
The Medical Information Mart for Intensive Care (MIMIC) datasets have become the Kernel of Digital Health Research by providing freely accessible, deidentified records from tens of thousands of critical care admissions, enabling a broad spectrum of applications in clinical decision support, outcome prediction, and healthcare analytics. Although numerous studies and surveys have explored the predictive power and clinical utility of MIMIC based models, critical challenges in data integration, representation, and interoperability remain underexplored. This paper presents a comprehensive survey that focuses uniquely on open problems. We identify persistent issues such as data granularity, cardinality limitations, heterogeneous coding schemes, and ethical constraints that hinder the generalizability and real-time implementation of machine learning models. We highlight key progress in dimensionality reduction, temporal modelling, causal inference, and privacy preserving analytics, while also outlining promising directions including hybrid modelling, federated learning, and standardized preprocessing pipelines. By critically examining these structural limitations and their implications, this survey offers actionable insights to guide the next generation of MIMIC powered digital health innovations.
A collaborative effort from Indiana University, The Chinese University of Hong Kong, The University of New South Wales, CSIRO's Data61, and Adobe Research introduced Federated In-Context Learning (Fed-ICL), a privacy-preserving and communication-efficient framework that iteratively refines Large Language Model answers for Question Answering tasks. This approach leverages decentralized client data without transmitting raw information or model parameters, achieving strong performance across benchmarks like MMLU and TruthfulQA while incurring significantly lower communication costs than traditional federated methods.
There are no more papers matching your filters at the moment.