privacy-preserving-ml
Fed-SE introduces a federated self-evolution framework enabling large language model (LLM) agents to collaboratively improve across diverse, privacy-constrained environments. It achieved an average task success rate of 0.66 across five complex tasks, outperforming centralized and local baselines, by leveraging local success filtering and global low-rank adapter aggregation.
Researchers at Anthropic introduced Selective GradienT Masking (SGTM), a pre-training method designed to localize and remove specific capabilities from large language models to address dual-use risks. This technique achieves an improved trade-off between retaining general knowledge and forgetting targeted information, resists adversarial fine-tuning up to 7 times better than prior unlearning methods, and demonstrates reduced information leakage in larger models.
Large language models (LLMs) possess vast knowledge acquired from extensive training corpora, but they often cannot remove specific pieces of information when needed, which makes it hard to handle privacy, bias mitigation, and knowledge correction. Traditional model unlearning approaches require computationally expensive fine-tuning or direct weight editing, making them impractical for real-world deployment. In this work, we introduce LoRA-based Unlearning with Negative Examples (LUNE), a lightweight framework that performs negative-only unlearning by updating only low-rank adapters while freezing the backbone, thereby localizing edits and avoiding disruptive global changes. Leveraging Low-Rank Adaptation (LoRA), LUNE targets intermediate representations to suppress (or replace) requested knowledge with an order-of-magnitude lower compute and memory than full fine-tuning or direct weight editing. Extensive experiments on multiple factual unlearning tasks show that LUNE: (I) achieves effectiveness comparable to full fine-tuning and memory-editing methods, and (II) reduces computational cost by about an order of magnitude.
PrivORL, developed at the University of Virginia, introduces the first method for generating differentially private synthetic datasets for offline reinforcement learning. This framework, utilizing advanced generative models with DP-SGD and a curiosity module, produces synthetic data that enables RL agents to achieve comparable performance to those trained on real data while robustly resisting membership inference attacks, for example, showing normalized returns of 69.3 in Maze2D at "epsilon"=10, close to 78.6 from real data.
Inferring the eventual goal of a mobile agent from noisy observations of its trajectory is a fundamental estimation problem. We initiate the study of such intent inference using a variant of a Rao-Blackwellized Particle Filter (RBPF), subject to the assumption that the agent's intent manifests through closed-loop behavior with a state-of-the-art provable practical stability property. Leveraging the assumed closed-form agent dynamics, the RBPF analytically marginalizes the linear-Gaussian substructure and updates particle weights only, improving sample efficiency over a standard particle filter. Two difference estimators are introduced: a Gaussian mixture model using the RBPF weights and a reduced version confining the mixture to the effective sample. We quantify how well the adversary can recover the agent's intent using information-theoretic leakage metrics and provide computable lower bounds on the Kullback-Leibler (KL) divergence between the true intent distribution and RBPF estimates via Gaussian-mixture KL bounds. We also provide a bound on the difference in performance between the two estimators, highlighting the fact that the reduced estimator performs almost as well as the complete one. Experiments illustrate fast and accurate intent recovery for compliant agents, motivating future work on designing intent-obfuscating controllers.
Screening patients for clinical trial eligibility remains a manual, time-consuming, and resource-intensive process. We present a secure, scalable proof-of-concept system for Artificial Intelligence (AI)-augmented patient-trial matching that addresses key implementation challenges: integrating heterogeneous electronic health record (EHR) data, facilitating expert review, and maintaining rigorous security standards. Leveraging open-source, reasoning-enabled large language models (LLMs), the system moves beyond binary classification to generate structured eligibility assessments with interpretable reasoning chains that support human-in-the-loop review. This decision support tool represents eligibility as a dynamic state rather than a fixed determination, identifying matches when available and offering actionable recommendations that could render a patient eligible in the future. The system aims to reduce coordinator burden, intelligently broaden the set of trials considered for each patient and guarantee comprehensive auditability of all AI-generated outputs.
Generative audio models, based on diffusion and autoregressive architectures, have advanced rapidly in both quality and expressiveness. This progress, however, raises pressing copyright concerns, as such models are often trained on vast corpora of artistic and commercial works. A central question is whether one can reliably verify if an artist's material was included in training, thereby providing a means for copyright holders to protect their content. In this work, we investigate the feasibility of such verification through membership inference attacks (MIA) on open-source generative audio models, which attempt to determine whether a specific audio sample was part of the training set. Our empirical results show that membership inference alone is of limited effectiveness at scale, as the per-sample membership signal is weak for models trained on large and diverse datasets. However, artists and media owners typically hold collections of works rather than isolated samples. Building on prior work in text and vision domains, in this work we focus on dataset inference (DI), which aggregates diverse membership evidence across multiple samples. We find that DI is successful in the audio domain, offering a more practical mechanism for assessing whether an artist's works contributed to model training. Our results suggest DI as a promising direction for copyright protection and dataset accountability in the era of large audio generative models.
We introduce a constraint-programming framework for generating synthetic populations that reproduce target statistics with high precision while enforcing full individual consistency. Unlike data-driven approaches that infer distributions from samples, our method directly encodes aggregated statistics and structural relations, enabling exact control of demographic profiles without requiring any microdata. We validate the approach on official demographic sources and study the impact of distributional deviations on downstream analyses. This work is conducted within the Pollitics project developed by Emotia, where synthetic populations can be queried through large language models to model societal behaviors, explore market and policy scenarios, and provide reproducible decision-grade insights without personal data.
Recent advances in generative models have demonstrated an exceptional ability to produce highly realistic images. However, previous studies show that generated images often resemble the training data, and this problem becomes more severe as the model size increases. Memorizing training data can lead to legal challenges, including copyright infringement, violations of portrait rights, and trademark violations. Existing approaches to mitigating memorization mainly focus on manipulating the denoising sampling process to steer image embeddings away from the memorized embedding space or employ unlearning methods that require training on datasets containing specific sets of memorized concepts. However, existing methods often incur substantial computational overhead during sampling, or focus narrowly on removing one or more groups of target concepts, imposing a significant limitation on their scalability. To understand and mitigate these problems, our work, UniForget, offers a new perspective on understanding the root cause of memorization. Our work demonstrates that specific parts of the model are responsible for copyrighted content generation. By applying model pruning, we can effectively suppress the probability of generating copyrighted content without targeting specific concepts while preserving the general generative capabilities of the model. Additionally, we show that our approach is both orthogonal and complementary to existing unlearning methods, thereby highlighting its potential to improve current unlearning and de-memorization techniques.
We present Ethics Readiness Levels (ERLs), a four-level, iterative method to track how ethical reflection is implemented in the design of AI systems. ERLs bridge high-level ethical principles and everyday engineering by turning ethical values into concrete prompts, checks, and controls within real use cases. The evaluation is conducted using a dynamic, tree-like questionnaire built from context-specific indicators, ensuring relevance to the technology and application domain. Beyond being a managerial tool, ERLs help facilitate a structured dialogue between ethics experts and technical teams, while our scoring system helps track progress over time. We demonstrate the methodology through two case studies: an AI facial sketch generator for law enforcement and a collaborative industrial robot. The ERL tool effectively catalyzes concrete design changes and promotes a shift from narrow technological solutionism to a more reflective, ethics-by-design mindset.
Medical Large Language Models (LLMs) are increasingly deployed for clinical decision support across diverse specialties, yet systematic evaluation of their robustness to adversarial misuse and privacy leakage remains inaccessible to most researchers. Existing security benchmarks require GPU clusters, commercial API access, or protected health data -- barriers that limit community participation in this critical research area. We propose a practical, fully reproducible framework for evaluating medical AI security under realistic resource constraints. Our framework design covers multiple medical specialties stratified by clinical risk -- from high-risk domains such as emergency medicine and psychiatry to general practice -- addressing jailbreaking attacks (role-playing, authority impersonation, multi-turn manipulation) and privacy extraction attacks. All evaluation utilizes synthetic patient records requiring no IRB approval. The framework is designed to run entirely on consumer CPU hardware using freely available models, eliminating cost barriers. We present the framework specification including threat models, data generation methodology, evaluation protocols, and scoring rubrics. This proposal establishes a foundation for comparative security assessment of medical-specialist models and defense mechanisms, advancing the broader goal of ensuring safe and trustworthy medical AI systems.
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the nn-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the dχd_\chi-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
Large Language Models (LLMs) have recently demonstrated remarkable performance in generating high-quality tabular synthetic data. In practice, two primary approaches have emerged for adapting LLMs to tabular data generation: (i) fine-tuning smaller models directly on tabular datasets, and (ii) prompting larger models with examples provided in context. In this work, we show that popular implementations from both regimes exhibit a tendency to compromise privacy by reproducing memorized patterns of numeric digits from their training data. To systematically analyze this risk, we introduce a simple No-box Membership Inference Attack (MIA) called LevAtt that assumes adversarial access to only the generated synthetic data and targets the string sequences of numeric digits in synthetic observations. Using this approach, our attack exposes substantial privacy leakage across a wide range of models and datasets, and in some cases, is even a perfect membership classifier on state-of-the-art models. Our findings highlight a unique privacy vulnerability of LLM-based synthetic data generation and the need for effective defenses. To this end, we propose two methods, including a novel sampling strategy that strategically perturbs digits during generation. Our evaluation demonstrates that this approach can defeat these attacks with minimal loss of fidelity and utility of the synthetic data.
Developing generalizable AI for medical imaging requires both access to large, multi-center datasets and standardized, reproducible tooling within research environments. However, leveraging real-world imaging data in clinical research environments is still hampered by strict regulatory constraints, fragmented software infrastructure, and the challenges inherent in conducting large-cohort multicentre studies. This leads to projects that rely on ad-hoc toolchains that are hard to reproduce, difficult to scale beyond single institutions and poorly suited for collaboration between clinicians and data scientists. We present Kaapana, a comprehensive open-source platform for medical imaging research that is designed to bridge this gap. Rather than building single-use, site-specific tooling, Kaapana provides a modular, extensible framework that unifies data ingestion, cohort curation, processing workflows and result inspection under a common user interface. By bringing the algorithm to the data, it enables institutions to keep control over their sensitive data while still participating in distributed experimentation and model development. By integrating flexible workflow orchestration with user-facing applications for researchers, Kaapana reduces technical overhead, improves reproducibility and enables conducting large-scale, collaborative, multi-centre imaging studies. We describe the core concepts of the platform and illustrate how they can support diverse use cases, from local prototyping to nation-wide research networks. The open-source codebase is available at this https URL
Large language models for code (LLM4Code) have greatly improved developer productivity but also raise privacy concerns due to their reliance on open-source repositories containing abundant personally identifiable information (PII). Prior work shows that commercial models can reproduce sensitive PII, yet existing studies largely treat PII as a single category and overlook the heterogeneous risks among different types. We investigate whether distinct PII types vary in their likelihood of being learned and leaked by LLM4Code, and whether this relationship is causal. Our methodology includes building a dataset with diverse PII types, fine-tuning representative models of different scales, computing training dynamics on real PII data, and formulating a structural causal model to estimate the causal effect of learnability on leakage. Results show that leakage risks differ substantially across PII types and correlate with their training dynamics: easy-to-learn instances such as IP addresses exhibit higher leakage, while harder types such as keys and passwords leak less frequently. Ambiguous types show mixed behaviors. This work provides the first causal evidence that leakage risks are type-dependent and offers guidance for developing type-aware and learnability-aware defenses for LLM4Code.
The rise of space AI is reshaping government and industry through applications such as disaster detection, border surveillance, and climate monitoring, powered by massive data from commercial and governmental low Earth orbit (LEO) satellites. Federated satellite learning (FSL) enables joint model training without sharing raw data, but suffers from slow convergence due to intermittent connectivity and introduces critical trust challenges--where biased or falsified updates can arise across satellite constellations, including those injected through cyberattacks on inter-satellite or satellite-ground communication links. We propose OrbitChain, a blockchain-backed framework that empowers trustworthy multi-vendor collaboration in LEO networks. OrbitChain (i) offloads consensus to high-altitude platforms (HAPs) with greater computational capacity, (ii) ensures transparent, auditable provenance of model updates from different orbits owned by different vendors, and (iii) prevents manipulated or incomplete contributions from affecting global FSL model aggregation. Extensive simulations show that OrbitChain reduces computational and communication overhead while improving privacy, security, and global model accuracy. Its permissioned proof-of-authority ledger finalizes over 1000 blocks with sub-second latency (0.16,s, 0.26,s, 0.35,s for 1-of-5, 3-of-5, and 5-of-5 quorums). Moreover, OrbitChain reduces convergence time by up to 30 hours on real satellite datasets compared to single-vendor, demonstrating its effectiveness for real-time, multi-vendor learning. Our code is available at this https URL
MobileFineTuner introduces a C++ native, end-to-end framework enabling Large Language Model fine-tuning directly on commodity mobile phones. It achieves model quality comparable to server-side training while integrating system-level optimizations that address the memory and energy constraints of mobile devices.
We study the classic problem of prediction with expert advice under the constraint of local differential privacy (LDP). In this context, we first show that a classical algorithm naturally satisfies LDP and then design two new algorithms that improve it: RW-AdaBatch and RW-Meta. For RW-AdaBatch, we exploit the limited-switching behavior induced by LDP to provide a novel form of privacy amplification that grows stronger on easier data, analogous to the shuffle model in offline learning. Drawing on the theory of random walks, we prove that this improvement carries essentially no utility cost. For RW-Meta, we develop a general method for privately selecting between experts that are themselves non-trivial learning algorithms, and we show that in the context of LDP this carries no extra privacy cost. In contrast, prior work has only considered data-independent experts. We also derive formal regret bounds that scale inversely with the degree of independence between experts. Our analysis is supplemented by evaluation on real-world data reported by hospitals during the COVID-19 pandemic; RW-Meta outperforms both the classical baseline and a state-of-the-art \textit{central} DP algorithm by 1.5-3×\times on the task of predicting which hospital will report the highest density of COVID patients each week.
AI agents powered by large language models are increasingly deployed as cloud services that autonomously access sensitive data, invoke external tools, and interact with other agents. However, these agents run within a complex multi-party ecosystem, where untrusted components can lead to data leakage, tampering, or unintended behavior. Existing Confidential Virtual Machines (CVMs) provide only per binary protection and offer no guarantees for cross-principal trust, accelerator-level isolation, or supervised agent behavior. We present Omega, a system that enables trusted AI agents by enforcing end-to-end isolation, establishing verifiable trust across all contributing principals, and supervising every external interaction with accountable provenance. Omega builds on Confidential VMs and Confidential GPUs to create a Trusted Agent Platform that hosts many agents within a single CVM using nested isolation. It also provides efficient multi-agent orchestration with cross-principal trust establishment via differential attestation, and a policy specification and enforcement framework that governs data access, tool usage, and inter-agent communication for data protection and regulatory compliance. Implemented on AMD SEV-SNP and NVIDIA H100, Omega fully secures agent state across CVM-GPU, and achieves high performance while enabling high-density, policy-compliant multi-agent deployments at cloud scale.
Removing specific data influence from large language models (LLMs) remains challenging, as retraining is costly and existing approximate unlearning methods are often unstable. The challenge is exacerbated when the forget set is small or imbalanced. We introduce RapidUn, an influence-driven and parameter-efficient unlearning framework. It first estimates per-sample influence through a fast estimation module, then maps these scores into adaptive update weights that guide selective parameter updates -- forgetting harmful behavior while retaining general knowledge. On Mistral-7B and Llama-3-8B across Dolly-15k and Alpaca-57k, RapidUn achieves up to 100 times higher efficiency than full retraining and consistently outperforms Fisher, GA, and LoReUn on both in-distribution and out-of-distribution forgetting. These results establish influence-guided parameter reweighting as a scalable and interpretable paradigm for LLM unlearning.
There are no more papers matching your filters at the moment.