Deezer Research
The rapid rise of generative AI has transformed music creation, with millions of users engaging in AI-generated music. Despite its popularity, concerns regarding copyright infringement, job displacement, and ethical implications have led to growing scrutiny and legal challenges. In parallel, AI-detection services have emerged, yet these systems remain largely opaque and privately controlled, mirroring the very issues they aim to address. This paper explores the fundamental properties of synthetic content and how it can be detected. Specifically, we analyze deconvolution modules commonly used in generative models and mathematically prove that their outputs exhibit systematic frequency artifacts -- manifesting as small yet distinctive spectral peaks. This phenomenon, related to the well-known checkerboard artifact, is shown to be inherent to a chosen model architecture rather than a consequence of training data or model weights. We validate our theoretical findings through extensive experiments on open-source models, as well as commercial AI-music generators such as Suno and Udio. We use these insights to propose a simple and interpretable detection criterion for AI-generated music. Despite its simplicity, our method achieves detection accuracy on par with deep learning-based approaches, surpassing 99% accuracy on several scenarios.
LibriQuote is a large-scale speech dataset compiling over 5,000 hours of fictional character utterances extracted from audiobooks, explicitly separating expressive dialogue from neutral narration. It includes narrative pseudo-labels derived from an LLM and contextual information, enabling advances in zero-shot expressive speech synthesis.
STONE, the current method in self-supervised learning for tonality estimation in music signals, cannot distinguish relative keys, such as C major versus A minor. In this article, we extend the neural network architecture and learning objective of STONE to perform self-supervised learning of major and minor keys (S-KEY). Our main contribution is an auxiliary pretext task to STONE, formulated using transposition-invariant chroma features as a source of pseudo-labels. S-KEY matches the supervised state of the art in tonality estimation on FMAKv2 and GTZAN datasets while requiring no human annotation and having the same parameter budget as STONE. We build upon this result and expand the training set of S-KEY to a million songs, thus showing the potential of large-scale self-supervised learning in music information retrieval.
Researchers at Deezer developed a general-purpose detector for AI-generated music, demonstrating high initial accuracy in identifying synthetic compositions, though the model's performance significantly decreased when exposed to common audio manipulations or generative models from different architectural families.
Researchers from Deezer and Johannes Kepler University Linz developed an end-to-end pipeline to detect AI-generated songs, utilizing lyrics transcribed directly from audio waveforms. This method demonstrates enhanced robustness against audio manipulations and superior generalization to unseen AI audio generators compared to traditional audio-artifact-based detection techniques.
6
A new exploration method, von Mises-Fisher exploration (vMF-exp), is introduced to enable efficient and principled exploration in Reinforcement Learning environments with millions of actions represented by hyperspherical embeddings. Deployed at Deezer, vMF-exp increased liked recommended songs by 11% and improved playlist diversity by 35% compared to baselines, demonstrating scalability and unrestricted exploration.
This study critically examines the long-held assumptions connecting Heaps’ law and Zipf’s law, demonstrating that temporal correlations significantly influence type-token growth in discovery processes. Through empirical analysis of text, music listening, and web browsing data, the research reveals that the Heaps exponent is system-dependent and often decoupled from the static rank-frequency distribution, particularly in dynamic digital environments.
DE-DETECT, a multimodal late-fusion pipeline, identifies AI-generated lyrics using only audio input by combining automatically transcribed text and speech features. This method demonstrated superior robustness against audio perturbations and better generalization to unseen AI music generators, achieving an average recall of 87.9% under attacks and 94.1% for an unseen generator.
A prevalent practice in recommender systems consists in averaging item embeddings to represent users or higher-level concepts in the same embedding space. This paper investigates the relevance of such a practice. For this purpose, we propose an expected precision score, designed to measure the consistency of an average embedding relative to the items used for its construction. We subsequently analyze the mathematical expression of this score in a theoretical setting with specific assumptions, as well as its empirical behavior on real-world data from music streaming services. Our results emphasize that real-world averages are less consistent for recommendation, which paves the way for future research to better align real-world embeddings with assumptions from our theoretical setting.
One particularly promising use case of Large Language Models (LLMs) for recommendation is the automatic generation of Natural Language (NL) user taste profiles from consumption data. These profiles offer interpretable and editable alternatives to opaque collaborative filtering representations, enabling greater transparency and user control. However, it remains unclear whether users consider these profiles to be an accurate representation of their taste, which is crucial for trust and usability. Moreover, because LLMs inherit societal and data-driven biases, profile quality may systematically vary across user and item characteristics. In this paper, we study this issue in the context of music streaming, where personalization is challenged by a large and culturally diverse catalog. We conduct a user study in which participants rate NL profiles generated from their own listening histories. We analyze whether identification with the profiles is biased by user attributes (e.g., mainstreamness, taste diversity) and item features (e.g., genre, country of origin). We also compare these patterns to those observed when using the profiles in a downstream recommendation task. Our findings highlight both the potential and limitations of scrutable, LLM-based profiling in personalized systems.
Contrastive learning and equivariant learning are effective methods for self-supervised learning (SSL) for audio content analysis. Yet, their application to music information retrieval (MIR) faces a dilemma: the former is more effective on tagging (e.g., instrument recognition) but less effective on structured prediction (e.g., tonality estimation); The latter can match supervised methods on the specific task it is designed for, but it does not generalize well to other tasks. In this article, we adopt a best-of-both-worlds approach by training a deep neural network on both kinds of pretext tasks at once. The proposed new architecture is a Vision Transformer with 1-D spectrogram patches (ViT-1D), equipped with two class tokens, which are specialized to different self-supervised pretext tasks but optimized through the same model: hence the qualification of self-supervised multi-class-token multitask (MT2). The former class token optimizes cross-power spectral density (CPSD) for equivariant learning over the circle of fifths, while the latter optimizes normalized temperature-scaled cross-entropy (NT-Xent) for contrastive learning. MT2 combines the strengths of both pretext tasks and outperforms consistently both single-class-token ViT-1D models trained with either contrastive or equivariant learning. Averaging the two class tokens further improves performance on several tasks, highlighting the complementary nature of the representations learned by each class token. Furthermore, using the same single-linear-layer probing method on the features of last layer, MT2 outperforms MERT on all tasks except for beat tracking; achieving this with 18x fewer parameters thanks to its multitasking capabilities. Our SSL benchmark demonstrates the versatility of our multi-class-token multitask learning approach for MIR applications.
4
In music information retrieval (MIR), contrastive self-supervised learning for general-purpose representation models is effective for global tasks such as automatic tagging. However, for local tasks such as chord estimation, it is widely assumed that contrastively trained general-purpose self-supervised models are inadequate and that more sophisticated SSL is necessary; e.g., masked modeling. Our paper challenges this assumption by revealing the potential of contrastive SSL paired with a transformer in local MIR tasks. We consider a lightweight vision transformer with one-dimensional patches in the time--frequency domain (ViT-1D) and train it with simple contrastive SSL through normalized temperature-scaled cross-entropy loss (NT-Xent). Although NT-Xent operates only over the class token, we observe that, potentially thanks to weight sharing, informative musical properties emerge in ViT-1D's sequence tokens. On global tasks, the temporal average of class and sequence tokens offers a performance increase compared to the class token alone, showing useful properties in the sequence tokens. On local tasks, sequence tokens perform unexpectedly well, despite not being specifically trained for. Furthermore, high-level musical features such as onsets emerge from layer-wise attention maps and self-similarity matrices show different layers capture different musical dimensions. Our paper does not focus on improving performance but advances the musical interpretation of transformers and sheds light on some overlooked abilities of contrastive SSL paired with transformers for sequence modeling in MIR.
A system developed by Deezer Research, PISA, integrates Transformer architecture with ACT-R cognitive principles to provide repeat-aware sequential listening session recommendations. This approach simultaneously captures dynamic preference evolution and accurately models repetitive listening patterns, achieving strong performance on both repeated and novel song suggestions across large-scale music datasets.
While the topic of listening context is widely studied in the literature of music recommender systems, the integration of regular user behavior is often omitted. In this paper, we propose PACE (PAttern-based user Consumption Embedding), a framework for building user embeddings that takes advantage of periodic listening behaviors. PACE leverages users' multichannel time-series consumption patterns to build understandable user vectors. We believe the embeddings learned with PACE unveil much about the repetitive nature of user listening dynamics. By applying this framework on long-term user histories, we evaluate the embeddings through a predictive task of activities performed while listening to music. The validation task's interest is two-fold, while it shows the relevance of our approach, it also offers an insightful way of understanding users' musical consumption habits.
The streaming service Deezer heavily relies on the search to help users navigate through its extensive music catalog. Nonetheless, it is primarily designed to find specific items and does not lead directly to a smooth listening experience. We present Text2Playlist, a stand-alone tool that addresses these limitations. Text2Playlist leverages generative AI, music information retrieval and recommendation systems to generate query-specific and personalized playlists, successfully deployed at scale.
Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.
50
Researchers at Deezer developed the first general-purpose music deepfake detector, demonstrating 99.8% accuracy under controlled conditions using amplitude spectrograms. While effective in ideal scenarios, the detector exhibited severe performance degradation when deepfake audios were subjected to common manipulations or generated by unseen architectures, highlighting the challenges of robust real-world deployment.
Large Language Models (LLMs) have shown promising results in a variety of literary tasks, often using complex memorized details of narration and fictional characters. In this work, we evaluate the ability of Llama-3 at attributing utterances of direct-speech to their speaker in novels. The LLM shows impressive results on a corpus of 28 novels, surpassing published results with ChatGPT and encoder-based baselines by a large margin. We then validate these results by assessing the impact of book memorization and annotation contamination. We found that these types of memorization do not explain the large performance gain, making Llama-3 the new state-of-the-art for quotation attribution in English literature. We release publicly our code and data.
Annotating musical beats is a very long and tedious process. In order to combat this problem, we present a new self-supervised learning pretext task for beat tracking and downbeat estimation. This task makes use of Spleeter, an audio source separation model, to separate a song's drums from the rest of its signal. The first set of signals are used as positives, and by extension negatives, for contrastive learning pre-training. The drum-less signals, on the other hand, are used as anchors. When pre-training a fully-convolutional and recurrent model using this pretext task, an onset function is learned. In some cases, this function is found to be mapped to periodic elements in a song. We find that pre-trained models outperform randomly initialized models when a beat tracking training set is extremely small (less than 10 examples). When this is not the case, pre-training leads to a learning speed-up that causes the model to overfit to the training set. More generally, this work defines new perspectives in the realm of musical self-supervised learning. It is notably one of the first works to use audio source separation as a fundamental component of self-supervision.
Graph neural networks (GNNs) have recently become the standard approach for learning with graph-structured data. Prior work has shed light into their potential, but also their limitations. Unfortunately, it was shown that standard GNNs are limited in their expressive power. These models are no more powerful than the 1-dimensional Weisfeiler-Leman (1-WL) algorithm in terms of distinguishing non-isomorphic graphs. In this paper, we propose Path Neural Networks (PathNNs), a model that updates node representations by aggregating paths emanating from nodes. We derive three different variants of the PathNN model that aggregate single shortest paths, all shortest paths and all simple paths of length up to K. We prove that two of these variants are strictly more powerful than the 1-WL algorithm, and we experimentally validate our theoretical results. We find that PathNNs can distinguish pairs of non-isomorphic graphs that are indistinguishable by 1-WL, while our most expressive PathNN variant can even distinguish between 3-WL indistinguishable graphs. The different PathNN variants are also evaluated on graph classification and graph regression datasets, where in most cases, they outperform the baseline methods.
26
There are no more papers matching your filters at the moment.