Meta AI researchers demonstrate that deep neural networks can develop sophisticated intuitive physics understanding through self-supervised learning on natural videos, achieving 98% accuracy on physics violation detection tasks without requiring hard-coded physical knowledge, while establishing that prediction in representation space is crucial for developing these capabilities.
188
A comprehensive survey examines the landscape of Spoken Language Models (SLMs), analyzing architectures, training strategies, and evaluation methods across pure SLMs, speech+text SLMs, and speech-aware text LMs while establishing unified terminology and identifying key challenges in developing universal speech processing systems.
Researchers at Meta AI Research and affiliated academic institutions developed dGSLM, a "textless" generative spoken language model that directly generates naturalistic two-channel spoken dialogues from raw audio. The model excels at reproducing human-like turn-taking dynamics, including appropriate overlaps and the nuanced timing of pauses, achieving a Naturalness MOS of 3.70, despite current limitations in semantic coherence.
127
This paper presents IntPhys 2019, a new benchmark for evaluating artificial intelligence systems' understanding of intuitive physics through a plausibility judgment task, inspired by infant cognition. It demonstrates that current self-supervised deep learning models perform significantly worse than humans, particularly struggling with physical reasoning when events are occluded.
We introduce Spirit LM, a foundation multimodal language model that freely mixes text and speech. Our model is based on a 7B pretrained text language model that we extend to the speech modality by continuously training it on text and speech units. Speech and text sequences are concatenated as a single stream of tokens, and trained with a word-level interleaving method using a small automatically-curated speech-text parallel corpus. Spirit LM comes in two versions: a Base version that uses speech phonetic units (HuBERT) and an Expressive version that models expressivity using pitch and style units in addition to the phonetic units. For both versions, the text is encoded with subword BPE tokens. The resulting model displays both the semantic abilities of text models and the expressive abilities of speech models. Additionally, we demonstrate that Spirit LM can learn new tasks in a few-shot fashion across modalities (i.e. ASR, TTS, Speech Classification). We make available model weights and inference code.
879
An analytical framework decomposes the Lewis game objective into information and co-adaptation losses, uncovering that overfitting in co-adaptation is a primary barrier to robust emergent communication. Managing this specific overfitting enables artificial agents to develop more generalizable and compositionally structured languages, aligning with human linguistic expectations.
Researchers at Facebook AI Research present a method for speech resynthesis that directly uses discrete, disentangled self-supervised representations, circumventing traditional Mel-spectrograms. Their approach enables an ultra-lightweight HuBERT-based codec that achieves superior perceived quality at 365 bits per second, outperforming established codecs like Opus and LPCNet.
400
We introduce Metric-Learning Encoding Models (MLEMs) as a new approach to understand how neural systems represent the theoretical features of the objects they process. As a proof-of-concept, we apply MLEMs to neural representations extracted from BERT, and track a wide variety of linguistic features (e.g., tense, subject person, clause type, clause embedding). We find that: (1) linguistic features are ordered: they separate representations of sentences to different degrees in different layers; (2) neural representations are organized hierarchically: in some layers, we find clusters of representations nested within larger clusters, following successively important linguistic features; (3) linguistic features are disentangled in middle layers: distinct, selective units are activated by distinct linguistic features. Methodologically, MLEMs are superior (4) to multivariate decoding methods, being more robust to type-I errors, and (5) to univariate encoding methods, in being able to predict both local and distributed representations. Together, this demonstrates the utility of Metric-Learning Encoding Methods for studying how linguistic features are neurally encoded in language models and the advantage of MLEMs over traditional methods. MLEMs can be extended to other domains (e.g. vision) and to other neural systems, such as the human brain.
The paper introduces deep learning as a computational tool for modeling language evolution, presenting a comprehensive framework of communication games where neural agents develop communication protocols. It demonstrates that while agents can learn to communicate, basic tasks alone often fail to produce human-like language properties, highlighting the necessity of human-inspired constraints for the emergence of complex linguistic features.
1
Are large language models (LLMs) sensitive to the distinction between humanly possible languages and humanly impossible languages? This question is taken by many to bear on whether LLMs and humans share the same innate learning biases. Previous work has attempted to answer it in the positive by comparing LLM learning curves on existing language datasets and on "impossible" datasets derived from them via various perturbation functions. Using the same methodology, we examine this claim on a wider set of languages and impossible perturbations. We find that in most cases, GPT-2 learns each language and its impossible counterpart equally easily, in contrast to previous claims. We also apply a more lenient condition by testing whether GPT-2 provides any kind of separation between the whole set of natural languages and the whole set of impossible languages. By considering cross-linguistic variance in various metrics computed on the perplexity curves, we show that GPT-2 provides no systematic separation between the possible and the impossible. Taken together, these perspectives show that LLMs do not share the human innate biases that shape linguistic typology.
During their first years of life, infants learn the language(s) of their environment at an amazing speed despite large cross cultural variations in amount and complexity of the available language input. Understanding this simple fact still escapes current cognitive and linguistic theories. Recently, spectacular progress in the engineering science, notably, machine learning and wearable technology, offer the promise of revolutionizing the study of cognitive development. Machine learning offers powerful learning algorithms that can achieve human-like performance on many linguistic tasks. Wearable sensors can capture vast amounts of data, which enable the reconstruction of the sensory experience of infants in their natural environment. The project of 'reverse engineering' language development, i.e., of building an effective system that mimics infant's achievements appears therefore to be within reach. Here, we analyze the conditions under which such a project can contribute to our scientific understanding of early language development. We argue that instead of defining a sub-problem or simplifying the data, computational models should address the full complexity of the learning situation, and take as input the raw sensory signals available to infants. This implies that (1) accessible but privacy-preserving repositories of home data be setup and widely shared, and (2) models be evaluated at different linguistic levels through a benchmark of psycholinguist tests that can be passed by machines and humans alike, (3) linguistically and psychologically plausible learning architectures be scaled up to real data using probabilistic/optimization principles from machine learning. We discuss the feasibility of this approach and present preliminary results.
This study critically examines the long-held assumptions connecting Heaps’ law and Zipf’s law, demonstrating that temporal correlations significantly influence type-token growth in discovery processes. Through empirical analysis of text, music listening, and web browsing data, the research reveals that the Heaps exponent is system-dependent and often decoupled from the static rank-frequency distribution, particularly in dynamic digital environments.
Self-supervised techniques for learning speech representations have been shown to develop linguistic competence from exposure to speech without the need for human labels. In order to fully realize the potential of these approaches and further our understanding of how infants learn language, simulations must closely emulate real-life situations by training on developmentally plausible corpora and benchmarking against appropriate test sets. To this end, we propose a language-acquisition-friendly benchmark to probe spoken language models at the lexical and syntactic levels, both of which are compatible with the vocabulary typical of children's language experiences. This paper introduces the benchmark and summarizes a range of experiments showing its usefulness. In addition, we highlight two exciting challenges that need to be addressed for further progress: bridging the gap between text and speech and between clean speech and in-the-wild speech.
We present a corpus of 100 documents, OBSINFOX, selected from 17 sources of French press considered unreliable by expert agencies, annotated using 11 labels by 8 annotators. By collecting more labels than usual, by more annotators than is typically done, we can identify features that humans consider as characteristic of fake news, and compare them to the predictions of automated classifiers. We present a topic and genre analysis using Gate Cloud, indicative of the prevalence of satire-like text in the corpus. We then use the subjectivity analyzer VAGO, and a neural version of it, to clarify the link between ascriptions of the label Subjective and ascriptions of the label Fake News. The annotated dataset is available online at the following url: this https URL Keywords: Fake News, Multi-Labels, Subjectivity, Vagueness, Detail, Opinion, Exaggeration, French Press
3
Neural networks offer good approximation to many tasks but consistently fail to reach perfect generalization, even when theoretical work shows that such perfect solutions can be expressed by certain architectures. Using the task of formal language learning, we focus on one simple formal language and show that the theoretically correct solution is in fact not an optimum of commonly used objectives -- even with regularization techniques that according to common wisdom should lead to simple weights and good generalization (L1, L2) or other meta-heuristics (early-stopping, dropout). On the other hand, replacing standard targets with the Minimum Description Length objective (MDL) results in the correct solution being an optimum.
A framework quantifies the cognitive complexity of chess variations using entropy theory, demonstrating that positions with similar engine evaluations can present vastly different challenges to human players based on skill level. The research reveals that experts find balanced positions particularly complex, while beginners struggle more uniformly across evaluation ranges.
Accurate estimation of question difficulty and prediction of student performance play key roles in optimizing educational instruction and enhancing learning outcomes within digital learning platforms. The Elo rating system is widely recognized for its proficiency in predicting student performance by estimating both question difficulty and student ability while providing computational efficiency and real-time adaptivity. This paper presents an adaptation of a multi concept variant of the Elo rating system to the data collected by a medical training platform, a platform characterized by a vast knowledge corpus, substantial inter-concept overlap, a huge question bank with significant sparsity in user question interactions, and a highly diverse user population, presenting unique challenges. Our study is driven by two primary objectives: firstly, to comprehensively evaluate the Elo rating systems capabilities on this real-life data, and secondly, to tackle the issue of imprecise early stage estimations when implementing the Elo rating system for online assessments. Our findings suggest that the Elo rating system exhibits comparable accuracy to the well-established logistic regression model in predicting final exam outcomes for users within our digital platform. Furthermore, results underscore that initializing Elo rating estimates with historical data remarkably reduces errors and enhances prediction accuracy, especially during the initial phases of student interactions.
This paper presents the final results of the ICDAR 2021 Competition on Historical Map Segmentation (MapSeg), encouraging research on a series of historical atlases of Paris, France, drawn at 1/5000 scale between 1894 and 1937. The competition featured three tasks, awarded separately. Task~1 consists in detecting building blocks and was won by the L3IRIS team using a DenseNet-121 network trained in a weakly supervised fashion. This task is evaluated on 3 large images containing hundreds of shapes to detect. Task~2 consists in segmenting map content from the larger map sheet, and was won by the UWB team using a U-Net-like FCN combined with a binarization method to increase detection edge accuracy. Task~3 consists in locating intersection points of geo-referencing lines, and was also won by the UWB team who used a dedicated pipeline combining binarization, line detection with Hough transform, candidate filtering, and template matching for intersection refinement. Tasks~2 and~3 are evaluated on 95 map sheets with complex content. Dataset, evaluation tools and results are available under permissive licensing at \url{this https URL}.
3
In animals, category learning enhances discrimination between stimuli close to the category boundary. This phenomenon, called categorical perception, was also empirically observed in artificial neural networks trained on classification tasks. In previous modeling works based on neuroscience data, we show that this expansion/compression is a necessary outcome of efficient learning. Here we extend our theoretical framework to artificial networks. We show that minimizing the Bayes cost (mean of the cross-entropy loss) implies maximizing the mutual information between the set of categories and the neural activities prior to the decision layer. Considering structured data with an underlying feature space of small dimension, we show that maximizing the mutual information implies (i) finding an appropriate projection space, and, (ii) building a neural representation with the appropriate metric. The latter is based on a Fisher information matrix measuring the sensitivity of the neural activity to changes in the projection space. Optimal learning makes this neural Fisher information follow a category-specific Fisher information, measuring the sensitivity of the category membership. Category learning thus induces an expansion of neural space near decision boundaries. We characterize the properties of the categorical Fisher information, showing that its eigenvectors give the most discriminant directions at each point of the projection space. We find that, unexpectedly, its maxima are in general not exactly at, but near, the class boundaries. Considering toy models and the MNIST dataset, we numerically illustrate how after learning the two Fisher information matrices match, and essentially align with the category boundaries. Finally, we relate our approach to the Information Bottleneck one, and we exhibit a bias-variance decomposition of the Bayes cost, of interest on its own.
We investigate optimal strategies for decoding perceived natural speech from fMRI data acquired from a limited number of participants. Leveraging Lebel et al. (2023)'s dataset of 8 participants, we first demonstrate the effectiveness of training deep neural networks to predict LLM-derived text representations from fMRI activity. Then, in this data regime, we observe that multi-subject training does not improve decoding accuracy compared to single-subject approach. Furthermore, training on similar or different stimuli across subjects has a negligible effect on decoding accuracy. Finally, we find that our decoders better model syntactic than semantic features, and that stories containing sentences with complex syntax or rich semantic content are more challenging to decode. While our results demonstrate the benefits of having extensive data per participant (deep phenotyping), they suggest that leveraging multi-subject for natural speech decoding likely requires deeper phenotyping or a substantially larger cohort.
There are no more papers matching your filters at the moment.