MediaTek Research
Researchers from MediaTek Research and National Taiwan University introduce TASTE, a novel method for learning text-aligned speech tokens and embeddings that resolves the inherent length mismatch between speech and text. This approach enables spoken language models (SLMs) to generate highly natural and semantically coherent speech at an extremely low bitrate of approximately 150 bps, while also improving spoken question answering capabilities.
93
Multi-layer perceptrons (MLPs) conventionally follow a narrow-wide-narrow design where skip connections operate at the input/output dimensions while processing occurs in expanded hidden spaces. We challenge this convention by proposing wide-narrow-wide (Hourglass) MLP blocks where skip connections operate at expanded dimensions while residual computation flows through narrow bottlenecks. This inversion leverages higher-dimensional spaces for incremental refinement while maintaining computational efficiency through parameter-matched designs. Implementing Hourglass MLPs requires an initial projection to lift input signals to expanded dimensions. We propose that this projection can remain fixed at random initialization throughout training, enabling efficient training and inference implementations. We evaluate both architectures on generative tasks over popular image datasets, characterizing performance-parameter Pareto frontiers through systematic architectural search. Results show that Hourglass architectures consistently achieve superior Pareto frontiers compared to conventional designs. As parameter budgets increase, optimal Hourglass configurations favor deeper networks with wider skip connections and narrower bottlenecks-a scaling pattern distinct from conventional MLPs. Our findings suggest reconsidering skip connection placement in modern architectures, with potential applications extending to Transformers and other residual networks.
MediaTek Research introduces Group Think, a paradigm where a single large language model concurrently generates multiple, mutually adaptive reasoning paths at the token level. This approach improves reasoning quality, reduces latency, and enhances GPU utilization for local inference, demonstrating emergent collaborative capabilities in existing models.
We propose "Generative Fusion Decoding" (GFD), a novel shallow fusion framework designed to integrate large language models (LLMs) into cross-modal text recognition systems for automatic speech recognition (ASR) and optical character recognition (OCR). We derive the necessary formulations to enable GFD to operate across mismatched token spaces of different models by calculating likelihood at the byte level, thereby enabling seamless fusion and synchronous progression during the decoding process. GFD is plug-and-play by design, making it readily compatible with various auto-regressive models without the need for any re-training. GFD proves effective for general ASR and OCR tasks through intermediate and frequent interactions with LLMs, surpassing cascaded methods in English and Mandarin benchmarks. In addition, GFD transfers in-context learning abilities of LLMs and allows for adaptive ASR in instruction-aware and long-context settings, yielding significant WER reductions of up to 17.7\%.
The Latent Flow Transformer (LFT) compresses large language models by replacing blocks of transformer layers with a single learned, continuous transport operator. This method enables significant parameter reduction while maintaining competitive performance, particularly demonstrated on the Pythia-410M model.
421
MediaTek Research systematically investigated strategies to improve LLM function-calling, including prompt formatting, data integration, and multilingual adaptation. The study demonstrated enhanced relevance detection using dedicated tool roles and a novel Decision Token, alongside successful transfer of function-calling abilities to Traditional Chinese.
We study the robustness of Transformer language models under semantic out-of-distribution (OOD) shifts, where training and test data lie in disjoint latent spaces. Using Wasserstein-1 distance and Gevrey-class smoothness, we derive sub-exponential upper bounds on prediction error. Our theoretical framework explains how smoothness governs generalization under distributional drift. We validate these findings through controlled experiments on arithmetic and Chain-of-Thought tasks with latent permutations and scalings. Results show empirical degradation aligns with our bounds, highlighting the geometric and functional principles underlying OOD generalization in Transformers.
Natural Continual Learning (NCL) integrates Bayesian weight regularization with trust-region optimization to address catastrophic forgetting in neural networks. This approach establishes state-of-the-art performance in recurrent and feedforward architectures, preserving stable latent representations across sequentially learned tasks.
We introduce a new task called Adaptable Error Detection (AED), which aims to identify behavior errors in few-shot imitation (FSI) policies based on visual observations in novel environments. The potential to cause serious damage to surrounding areas limits the application of FSI policies in real-world scenarios. Thus, a robust system is necessary to notify operators when FSI policies are inconsistent with the intent of demonstrations. This task introduces three challenges: (1) detecting behavior errors in novel environments, (2) identifying behavior errors that occur without revealing notable changes, and (3) lacking complete temporal information of the rollout due to the necessity of online detection. However, the existing benchmarks cannot support the development of AED because their tasks do not present all these challenges. To this end, we develop a cross-domain AED benchmark, consisting of 322 base and 153 novel environments. Additionally, we propose Pattern Observer (PrObe) to address these challenges. PrObe is equipped with a powerful pattern extractor and guided by novel learning objectives to parse discernible patterns in the policy feature representations of normal or error states. Through our comprehensive evaluation, PrObe demonstrates superior capability to detect errors arising from a wide range of FSI policies, consistently surpassing strong baselines. Moreover, we conduct detailed ablations and a pilot study on error correction to validate the effectiveness of the proposed architecture design and the practicality of the AED task, respectively. The AED project page can be found at this https URL.
Channel modelling is essential to designing modern wireless communication systems. The increasing complexity of channel modelling and the cost of collecting high-quality wireless channel data have become major challenges. In this paper, we propose a diffusion model based channel sampling approach for rapidly synthesizing channel realizations from limited data. We use a diffusion model with a U Net based architecture operating in the frequency space domain. To evaluate how well the proposed model reproduces the true distribution of channels in the training dataset, two evaluation metrics are used: i)i) the approximate 22-Wasserstein distance between real and generated distributions of the normalized power spectrum in the antenna and frequency domains and ii)ii) precision and recall metric for distributions. We show that, compared to existing GAN based approaches which suffer from mode collapse and unstable training, our diffusion based approach trains stably and generates diverse and high-fidelity samples from the true channel distribution. We also show that we can pretrain the model on a simulated urban macro-cellular channel dataset and fine-tune it on a smaller, out-of-distribution urban micro-cellular dataset, therefore showing that it is feasible to model real world channels using limited data with this approach.
·
We present BreezyVoice, a Text-to-Speech (TTS) system specifically adapted for Taiwanese Mandarin, highlighting phonetic control abilities to address the unique challenges of polyphone disambiguation in the language. Building upon CosyVoice, we incorporate a S3S^{3} tokenizer, a large language model (LLM), an optimal-transport conditional flow matching model (OT-CFM), and a grapheme to phoneme prediction model, to generate realistic speech that closely mimics human utterances. Our evaluation demonstrates BreezyVoice's superior performance in both general and code-switching contexts, highlighting its robustness and effectiveness in generating high-fidelity speech. Additionally, we address the challenges of generalizability in modeling long-tail speakers and polyphone disambiguation. Our approach significantly enhances performance and offers valuable insights into the workings of neural codec TTS systems.
Llama-Breeze2 (hereinafter referred to as Breeze2) is a suite of advanced multi-modal language models, available in 3B and 8B parameter configurations, specifically designed to enhance Traditional Chinese language representation. Building upon the Llama 3.2 model family, we continue the pre-training of Breeze2 on an extensive corpus to enhance the linguistic and cultural heritage of Traditional Chinese. In addition to language modeling capabilities, we significantly augment the models with function calling and vision understanding capabilities. At the time of this publication, as far as we are aware, absent reasoning-inducing prompts, Breeze2 are the strongest performing models in Traditional Chinese function calling and image understanding in its size class. The effectiveness of Breeze2 is benchmarked across various tasks, including Taiwan general knowledge, instruction-following, long context, function calling, and vision understanding. We are publicly releasing all Breeze2 models under the Llama 3.2 Community License. We also showcase the capabilities of the model running on mobile platform with a mobile application which we also open source.
Consider the sequential optimization of a continuous, possibly non-convex, and expensive to evaluate objective function ff. The problem can be cast as a Gaussian Process (GP) bandit where ff lives in a reproducing kernel Hilbert space (RKHS). The state of the art analysis of several learning algorithms shows a significant gap between the lower and upper bounds on the simple regret performance. When NN is the number of exploration trials and γN\gamma_N is the maximal information gain, we prove an O~(γN/N)\tilde{\mathcal{O}}(\sqrt{\gamma_N/N}) bound on the simple regret performance of a pure exploration algorithm that is significantly tighter than the existing bounds. We show that this bound is order optimal up to logarithmic factors for the cases where a lower bound on regret is known. To establish these results, we prove novel and sharp confidence intervals for GP models applicable to RKHS elements which may be of broader interest.
In many domains, the most successful AI models tend to be the largest, indeed often too large to be handled by AI players with limited computational resources. To mitigate this, a number of compression methods have been developed, including methods that prune the network down to high sparsity whilst retaining performance. The best-performing pruning techniques are often those that use second-order curvature information (such as an estimate of the Fisher information matrix) to score the importance of each weight and to predict the optimal compensation for weight deletion. However, these methods are difficult to scale to high-dimensional parameter spaces without making heavy approximations. Here, we propose the FishLeg surgeon (FLS), a new second-order pruning method based on the Fisher-Legendre (FishLeg) optimizer. At the heart of FishLeg is a meta-learning approach to amortising the action of the inverse FIM, which brings a number of advantages. Firstly, the parameterisation enables the use of flexible tensor factorisation techniques to improve computational and memory efficiency without sacrificing much accuracy, alleviating challenges associated with scalability of most second-order pruning methods. Secondly, directly estimating the inverse FIM leads to less sensitivity to the amplification of stochasticity during inversion, thereby resulting in more precise estimates. Thirdly, our approach also allows for progressive assimilation of the curvature into the parameterisation. In the gradual pruning regime, this results in a more efficient estimate refinement as opposed to re-estimation. We find that FishLeg achieves higher or comparable performance against two common baselines in the area, most notably in the high sparsity regime when considering a ResNet18 model on CIFAR-10 (84% accuracy at 95% sparsity vs 60% for OBS) and TinyIM (53% accuracy at 80% sparsity vs 48% for OBS).
Researchers from MediaTek Research, National Taiwan University, and Nvidia developed a self-refining framework to enhance ASR by leveraging Text-to-Speech (TTS) synthesized data. Their model, Twister, achieved significant improvements in Mandarin and code-switching ASR performance, including a 55.88% relative WERR on a Mandarin-English code-switching benchmark, while using considerably less real transcribed speech data than existing methods.
Researchers from National Taiwan University and MediaTek Research developed RAD-Bench, a new benchmark to evaluate large language models (LLMs) in multi-turn retrieval-augmented dialogues, addressing a gap in existing single-turn or context-agnostic evaluations. The benchmark revealed that LLMs' performance in multi-turn RAG is distinct from their general chat capabilities, with closed-source models generally leading, but specific open-source models like Deepseek-v2 excelling in certain complex reasoning tasks.
In Spoken language understanding (SLU), a natural solution is concatenating pre-trained speech models (e.g. HuBERT) and pretrained language models (PLM, e.g. T5). Most previous works use pretrained language models with subword-based tokenization. However, the granularity of input units affects the alignment of speech model outputs and language model inputs, and PLM with character-based tokenization is underexplored. In this work, we conduct extensive studies on how PLMs with different tokenization strategies affect spoken language understanding task including spoken question answering (SQA) and speech translation (ST). We further extend the idea to create T5lephone(pronounced as telephone), a variant of T5 that is pretrained using phonemicized text. We initialize T5lephone with existing PLMs to pretrain it using relatively lightweight computational resources. We reached state-of-the-art on NMSQA, and the T5lephone model exceeds T5 with other types of units on end-to-end SQA and ST.
19
This paper introduces a general multi-agent bandit model in which each agent is facing a finite set of arms and may communicate with other agents through a central controller in order to identify, in pure exploration, or play, in regret minimization, its optimal arm. The twist is that the optimal arm for each agent is the arm with largest expected mixed reward, where the mixed reward of an arm is a weighted sum of the rewards of this arm for all agents. This makes communication between agents often necessary. This general setting allows to recover and extend several recent models for collaborative bandit learning, including the recently proposed federated learning with personalization (Shi et al., 2021). In this paper, we provide new lower bounds on the sample complexity of pure exploration and on the regret. We then propose a near-optimal algorithm for pure exploration. This algorithm is based on phased elimination with two novel ingredients: a data-dependent sampling scheme within each phase, aimed at matching a relaxation of the lower bound.
Neural Algorithmic Reasoning (NAR) research has demonstrated that graph neural networks (GNNs) could learn to execute classical algorithms. However, most previous approaches have always used a recurrent architecture, where each iteration of the GNN matches an iteration of the algorithm. In this paper we study neurally solving algorithms from a different perspective: since the algorithm's solution is often an equilibrium, it is possible to find the solution directly by solving an equilibrium equation. Our approach requires no information on the ground-truth number of steps of the algorithm, both during train and test time. Furthermore, the proposed method improves the performance of GNNs on executing algorithms and is a step towards speeding up existing NAR models. Our empirical evidence, leveraging algorithms from the CLRS-30 benchmark, validates that one can train a network to solve algorithmic problems by directly finding the equilibrium. We discuss the practical implementation of such models and propose regularisations to improve the performance of these equilibrium reasoners.
3
Artificial Intelligence (AI) has demonstrated unprecedented performance across various domains, and its application to communication systems is an active area of research. While current methods focus on task-specific solutions, the broader trend in AI is shifting toward large general models capable of supporting multiple applications. In this work, we take a step toward a foundation model for communication data--a transformer-based, multi-modal model designed to operate directly on communication data. We propose methodologies to address key challenges, including tokenization, positional embedding, multimodality, variable feature sizes, and normalization. Furthermore, we empirically demonstrate that such a model can successfully estimate multiple features, including transmission rank, selected precoder, Doppler spread, and delay profile.
There are no more papers matching your filters at the moment.