Microsoft Research NYC
Language models demonstrate remarkable abilities when pre-trained on large text corpora and fine-tuned for specific tasks, but how and why pre-training shapes the success of the final model remains poorly understood. Notably, although pre-training success is often quantified by cross-entropy loss, cross-entropy can be a poor predictor of downstream performance. Instead, we provide a theoretical perspective on this relationship through the lens of \emph{coverage}, which quantifies the probability mass the pre-trained model places on high-quality responses and which is necessary and sufficient for post-training and test-time scaling methods such as Best-of-N to succeed. Our main results develop an understanding of \emph{the coverage principle}, a phenomenon whereby next-token prediction (more generally, maximum likelihood) implicitly optimizes toward a model with good coverage. In particular, we uncover a mechanism that explains the power of coverage in predicting downstream performance: \emph{coverage generalizes faster than cross-entropy}, avoiding spurious dependence on problem-dependent parameters such as the sequence length. We also study practical algorithmic interventions with provable benefits for improving coverage, including (i) model/checkpoint selection procedures, (ii) gradient normalization schemes, and (iii) test-time decoding strategies.
Researchers introduce a representation-based exploration strategy that leverages pre-trained language model hidden states to identify and incentivize novel behaviors, improving the efficiency of finding correct solutions during inference and preventing diversity collapse during reinforcement learning post-training. This approach, evaluated across various models and reasoning tasks, notably reduced the samples needed to find correct answers and preserved diverse solution paths.
Researchers explored how deep learning, particularly Stochastic Gradient Descent (SGD), successfully learns sparse parity functions, a computationally challenging task, by demonstrating "hidden progress" through continuous, yet initially unobservable, improvements in internal metrics. Various neural network architectures, including MLPs and Transformers, achieved near-optimal convergence times with sharp phase transitions, indicating efficient feature learning even in non-overparameterized settings.
This research presents a framework for dissecting the algorithmic underpinnings of reasoning in Large Language Models, revealing that complex reasoning emerges from a compositional geometry of identifiable and steerable algorithmic primitives. It demonstrates these primitives can be causally induced and algebraically manipulated in activation space, showing how reasoning finetuning enhances their systematic use and cross-task transferability.
Self-attention, an architectural motif designed to model long-range interactions in sequential data, has driven numerous recent breakthroughs in natural language processing and beyond. This work provides a theoretical analysis of the inductive biases of self-attention modules. Our focus is to rigorously establish which functions and long-range dependencies self-attention blocks prefer to represent. Our main result shows that bounded-norm Transformer networks "create sparse variables": a single self-attention head can represent a sparse function of the input sequence, with sample complexity scaling only logarithmically with the context length. To support our analysis, we present synthetic experiments to probe the sample complexity of learning sparse Boolean functions with Transformers.
This work studies training instabilities of behavior cloning with deep neural networks. We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards, despite negligibly affecting the behavior cloning loss. We empirically disentangle the statistical and computational causes of these oscillations, and find them to stem from the chaotic propagation of minibatch SGD noise through unstable closed-loop dynamics. While SGD noise is benign in the single-step action prediction objective, it results in catastrophic error accumulation over long horizons, an effect we term gradient variance amplification (GVA). We show that many standard mitigation techniques do not alleviate GVA, but find an exponential moving average (EMA) of iterates to be surprisingly effective at doing so. We illustrate the generality of this phenomenon by showing the existence of GVA and its amelioration by EMA in both continuous control and autoregressive language generation. Finally, we provide theoretical vignettes that highlight the benefits of EMA in alleviating GVA and shed light on the extent to which classical convex models can help in understanding the benefits of iterate averaging in deep learning.
Recently, a plethora of works have proposed inference-time algorithms (e.g. best-of-n), which incorporate verifiers to assist the generation process. Their quality-efficiency trade-offs have been empirically benchmarked on a variety of constrained generation tasks, but the algorithmic design landscape is still largely poorly understood. In this paper, we develop a mathematical framework for reasoning about constrained generation using a pre-trained language model generator oracle and a process verifier--which can decide whether a prefix can be extended to a string which satisfies the constraints of choice. We show that even in very simple settings, access to a verifier can render an intractable problem (information-theoretically or computationally) to a tractable one. In fact, we show even simple algorithms, like tokenwise rejection sampling, can enjoy significant benefits from access to a verifier. Empirically, we show that a natural modification of tokenwise rejection sampling, in which the sampler is allowed to "backtrack" (i.e., erase the final few generated tokens) has robust and substantive benefits over natural baselines (e.g. (blockwise) rejection sampling, nucleus sampling)--both in terms of computational efficiency, accuracy and diversity.
We consider contextual bandits with linear constraints (CBwLC), a variant of contextual bandits in which the algorithm consumes multiple resources subject to linear constraints on total consumption. This problem generalizes contextual bandits with knapsacks (CBwK), allowing for packing and covering constraints, as well as positive and negative resource consumption. We provide the first algorithm for CBwLC (or CBwK) that is based on regression oracles. The algorithm is simple, computationally efficient, and statistically optimal under mild assumptions. Further, we provide the first vanishing-regret guarantees for CBwLC (or CBwK) that extend beyond the stochastic environment. We side-step strong impossibility results from prior work by identifying a weaker (and, arguably, fairer) benchmark to compare against. Our algorithm builds on LagrangeBwK (Immorlica et al., FOCS 2019), a Lagrangian-based technique for CBwK, and SquareCB (Foster and Rakhlin, ICML 2020), a regression-based technique for contextual bandits. Our analysis leverages the inherent modularity of both techniques.
Why do large language models sometimes output factual inaccuracies and exhibit erroneous reasoning? The brittleness of these models, particularly when executing long chains of reasoning, currently seems to be an inevitable price to pay for their advanced capabilities of coherently synthesizing knowledge, pragmatics, and abstract thought. Towards making sense of this fundamentally unsolved problem, this work identifies and analyzes the phenomenon of attention glitches, in which the Transformer architecture's inductive biases intermittently fail to capture robust reasoning. To isolate the issue, we introduce flip-flop language modeling (FFLM), a parametric family of synthetic benchmarks designed to probe the extrapolative behavior of neural language models. This simple generative task requires a model to copy binary symbols over long-range dependencies, ignoring the tokens in between. We find that Transformer FFLMs suffer from a long tail of sporadic reasoning errors, some of which we can eliminate using various regularization techniques. Our preliminary mechanistic analyses show why the remaining errors may be very difficult to diagnose and resolve. We hypothesize that attention glitches account for (some of) the closed-domain hallucinations in natural LLMs.
Noise contrastive learning is a popular technique for unsupervised representation learning. In this approach, a representation is obtained via reduction to supervised learning, where given a notion of semantic similarity, the learner tries to distinguish a similar (positive) example from a collection of random (negative) examples. The success of modern contrastive learning pipelines relies on many parameters such as the choice of data augmentation, the number of negative examples, and the batch size; however, there is limited understanding as to how these parameters interact and affect downstream performance. We focus on disambiguating the role of one of these parameters: the number of negative examples. Theoretically, we show the existence of a collision-coverage trade-off suggesting that the optimal number of negative examples should scale with the number of underlying concepts in the data. Empirically, we scrutinize the role of the number of negatives in both NLP and vision tasks. In the NLP task, we find that the results broadly agree with our theory, while our vision experiments are murkier with performance sometimes even being insensitive to the number of negatives. We discuss plausible explanations for this behavior and suggest future directions to better align theory and practice.
In modern deep learning, algorithmic choices (such as width, depth, and learning rate) are known to modulate nuanced resource tradeoffs. This work investigates how these complexities necessarily arise for feature learning in the presence of computational-statistical gaps. We begin by considering offline sparse parity learning, a supervised classification problem which admits a statistical query lower bound for gradient-based training of a multilayer perceptron. This lower bound can be interpreted as a multi-resource tradeoff frontier: successful learning can only occur if one is sufficiently rich (large model), knowledgeable (large dataset), patient (many training iterations), or lucky (many random guesses). We show, theoretically and experimentally, that sparse initialization and increasing network width yield significant improvements in sample efficiency in this setting. Here, width plays the role of parallel search: it amplifies the probability of finding "lottery ticket" neurons, which learn sparse features more sample-efficiently. Finally, we show that the synthetic sparse parity task can be useful as a proxy for real problems requiring axis-aligned feature learning. We demonstrate improved sample efficiency on tabular classification benchmarks by using wide, sparsely-initialized MLP models; these networks sometimes outperform tuned random forests.
We introduce a new family of video prediction models designed to support downstream control tasks. We call these models Video Occupancy models (VOCs). VOCs operate in a compact latent space, thus avoiding the need to make predictions about individual pixels. Unlike prior latent-space world models, VOCs directly predict the discounted distribution of future states in a single step, thus avoiding the need for multistep roll-outs. We show that both properties are beneficial when building predictive models of video for use in downstream control. Code is available at \href{https://github.com/manantomar/video-occupancy-models}{\texttt{github.com/manantomar/video-occupancy-models}}.
33
For infinite action contextual bandits, smoothed regret and reduction to regression results in state-of-the-art online performance with computational cost independent of the action set: unfortunately, the resulting data exhaust does not have well-defined importance-weights. This frustrates the execution of downstream data science processes such as offline model selection. In this paper we describe an online algorithm with an equivalent smoothed regret guarantee, but which generates well-defined importance weights: in exchange, the online computational cost increases, but only to order smoothness (i.e., still independent of the action set). This removes a key obstacle to adoption of smoothed regret in production scenarios.
Intrinsic rewards play a central role in handling the exploration-exploitation trade-off when designing sequential decision-making algorithms, in both foundational theory and state-of-the-art deep reinforcement learning. The LinUCB algorithm, a centerpiece of the stochastic linear bandits literature, prescribes an elliptical bonus which addresses the challenge of leveraging shared information in large action spaces. This bonus scheme cannot be directly transferred to high-dimensional exploration problems, however, due to the computational cost of maintaining the inverse covariance matrix of action features. We introduce \emph{anti-concentrated confidence bounds} for efficiently approximating the elliptical bonus, using an ensemble of regressors trained to predict random noise from policy network-derived features. Using this approximation, we obtain stochastic linear bandit algorithms which obtain O~(dT)\tilde O(d \sqrt{T}) regret bounds for poly(d)\mathrm{poly}(d) fixed actions. We develop a practical variant for deep reinforcement learning that is competitive with contemporary intrinsic reward heuristics on Atari benchmarks.
Supervised finetuning (SFT) on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities observed in modern large language models (LLMs). However, the annotation efforts required to produce high quality responses for instructions are becoming prohibitively expensive, especially as the number of tasks spanned by instruction datasets continues to increase. Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool, but its high computational cost remains a barrier to its widespread applicability in the context of LLMs. To mitigate the annotation cost of SFT and circumvent the computational bottlenecks of active learning, we propose using experimental design. Experimental design techniques select the most informative samples to label, and typically maximize some notion of uncertainty and/or diversity. In our work, we implement a framework that evaluates several existing and novel experimental design techniques and find that these methods consistently yield significant gains in label efficiency with little computational overhead. On generative tasks, our methods achieve the same generalization performance with only 50%50\% of annotation cost required by random sampling.
In real-world reinforcement learning applications the learner's observation space is ubiquitously high-dimensional with both relevant and irrelevant information about the task at hand. Learning from high-dimensional observations has been the subject of extensive investigation in supervised learning and statistics (e.g., via sparsity), but analogous issues in reinforcement learning are not well understood, even in finite state/action (tabular) domains. We introduce a new problem setting for reinforcement learning, the Exogenous Markov Decision Process (ExoMDP), in which the state space admits an (unknown) factorization into a small controllable (or, endogenous) component and a large irrelevant (or, exogenous) component; the exogenous component is independent of the learner's actions, but evolves in an arbitrary, temporally correlated fashion. We provide a new algorithm, ExoRL, which learns a near-optimal policy with sample complexity polynomial in the size of the endogenous component and nearly independent of the size of the exogenous component, thereby offering a doubly-exponential improvement over off-the-shelf algorithms. Our results highlight for the first time that sample-efficient reinforcement learning is possible in the presence of exogenous information, and provide a simple, user-friendly benchmark for investigation going forward.
We consider a general statistical estimation problem wherein binary labels across different observations are not independent conditioned on their feature vectors, but dependent, capturing settings where e.g. these observations are collected on a spatial domain, a temporal domain, or a social network, which induce dependencies. We model these dependencies in the language of Markov Random Fields and, importantly, allow these dependencies to be substantial, i.e do not assume that the Markov Random Field capturing these dependencies is in high temperature. As our main contribution we provide algorithms and statistically efficient estimation rates for this model, giving several instantiations of our bounds in logistic regression, sparse logistic regression, and neural network settings with dependent data. Our estimation guarantees follow from novel results for estimating the parameters (i.e. external fields and interaction strengths) of Ising models from a {\em single} sample. {We evaluate our estimation approach on real networked data, showing that it outperforms standard regression approaches that ignore dependencies, across three text classification datasets: Cora, Citeseer and Pubmed.}
How do latent and inference time computations enable large language models (LLMs) to solve multi-step reasoning? We introduce a framework for tracing and steering algorithmic primitives that underlie model reasoning. Our approach links reasoning traces to internal activation patterns and evaluates algorithmic primitives by injecting them into residual streams and measuring their effect on reasoning steps and task performance. We consider four benchmarks: Traveling Salesperson Problem (TSP), 3SAT, AIME, and graph navigation. We operationalize primitives by clustering neural activations and labeling their matched reasoning traces. We then apply function vector methods to derive primitive vectors as reusable compositional building blocks of reasoning. Primitive vectors can be combined through addition, subtraction, and scalar operations, revealing a geometric logic in activation space. Cross-task and cross-model evaluations (Phi-4, Phi-4-Reasoning, Llama-3-8B) show both shared and task-specific primitives. Notably, comparing Phi-4 with its reasoning-finetuned variant highlights compositional generalization after finetuning: Phi-4-Reasoning exhibits more systematic use of verification and path-generation primitives. Injecting the associated primitive vectors in Phi-4-Base induces behavioral hallmarks associated with Phi-4-Reasoning. Together, these findings demonstrate that reasoning in LLMs may be supported by a compositional geometry of algorithmic primitives, that primitives transfer cross-task and cross-model, and that reasoning finetuning strengthens algorithmic generalization across domains.
Reinforcement learning (RL) promises to expand the capabilities of language models, but it is unclear if current RL techniques promote the discovery of novel behaviors, or simply sharpen those already present in the base model. In this paper, we investigate the value of deliberate exploration -- explicitly incentivizing the model to discover novel and diverse behaviors -- and aim to understand how the knowledge in pre-trained models can guide this search. Our main finding is that exploration with a simple, principled, representation-based bonus derived from the pre-trained language model's hidden states significantly improves diversity and pass@k rates -- both for post-training, and in a novel inference-time scaling setting we introduce. For inference-time, exploration with representation-based diversity improves efficiency, consistently improving pass@k rates across a variety of models and reasoning tasks. For example, for Qwen-2.5-14b-Instruct we obtain over 50% improvement in verifier efficiency on almost all tasks. For post-training, we show that integrating this exploration strategy into an RL pipeline improves reasoning performance over that of the initial model and over standard RL post-training. For example, on AIME 2024, our post-trained Qwen-2.5-7b-Instruct's pass@80 matches the pass@256 of GRPO on the same model, demonstrating a 3x improvement in test-time sample efficiency. Overall, our findings suggest that deliberate exploration -- with the right notion of diversity -- is a practical path toward discovery of new behaviors beyond sharpening.
Active learning is perhaps most naturally posed as an online learning problem. However, prior active learning approaches with deep neural networks assume offline access to the entire dataset ahead of time. This paper proposes VeSSAL, a new algorithm for batch active learning with deep neural networks in streaming settings, which samples groups of points to query for labels at the moment they are encountered. Our approach trades off between uncertainty and diversity of queried samples to match a desired query rate without requiring any hand-tuned hyperparameters. Altogether, we expand the applicability of deep neural networks to realistic active learning scenarios, such as applications relevant to HCI and large, fractured datasets.
14
There are no more papers matching your filters at the moment.