This paper explores multiparameter quantum metrology using
Greenberger-Horne-Zeilinger (GHZ)-type photon-added coherent states (PACS) and
investigates both independent and simultaneous parameter estimation with linear
and non-linear protocols, highlighting the significant potential of quantum
resources to enhance precision in multiparameter scenarios. To provide a
comprehensive analysis, we explicitly derive analytical expressions for the
quantum Cram\'er-Rao bound (QCRB) for each protocol. Additionally, we compare
the two estimation strategies, examining the behavior of their QCRBs and
offering insights into the advantages and limitations of these quantum states
in various contexts. Our results show that simultaneous estimation generally
outperforms independent estimation, particularly in non-linear protocols.
Furthermore, we analyze how the QCRB varies with the coherent state amplitude
∣α∣2, the number of estimated parameters
d, and the photon excitation
order
n across three protocols. The results indicate that increasing
∣α∣2 and decreasing
d improves estimation precision. For low
n, the
variation in the QCRB is similar for both symmetric and antisymmetric cases;
however, at higher
n, the antisymmetric case exhibits slightly better
precision. The dependence on
d is comparable for both types of states. We
also compare PACS-based GHZ states with NOON states and entangled coherent
states, demonstrating the relative performance of each. Finally, we conclude
with an analysis of homodyne detection in the context of a linear protocol,
discussing its impact on estimation accuracy.