Lunit Inc
The Convolutional Block Attention Module (CBAM) enhances Convolutional Neural Networks by sequentially applying channel and spatial attention mechanisms. This lightweight module consistently improves performance across various architectures and tasks, including image classification and object detection, with minimal additional computational cost.
2,104
Sequence modeling plays a vital role across various domains, with recurrent neural networks being historically the predominant method of performing these tasks. However, the emergence of transformers has altered this paradigm due to their superior performance. Built upon these advances, transformers have conjoined CNNs as two leading foundational models for learning visual representations. However, transformers are hindered by the O(N2)\mathcal{O}(N^2) complexity of their attention mechanisms, while CNNs lack global receptive fields and dynamic weight allocation. State Space Models (SSMs), specifically the \textit{\textbf{Mamba}} model with selection mechanisms and hardware-aware architecture, have garnered immense interest lately in sequential modeling and visual representation learning, challenging the dominance of transformers by providing infinite context lengths and offering substantial efficiency maintaining linear complexity in the input sequence. Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models. Intending to help researchers navigate the surge, this survey seeks to offer an encyclopedic review of Mamba models in medical imaging. Specifically, we start with a comprehensive theoretical review forming the basis of SSMs, including Mamba architecture and its alternatives for sequence modeling paradigms in this context. Next, we offer a structured classification of Mamba models in the medical field and introduce a diverse categorization scheme based on their application, imaging modalities, and targeted organs. Finally, we summarize key challenges, discuss different future research directions of the SSMs in the medical domain, and propose several directions to fulfill the demands of this field. In addition, we have compiled the studies discussed in this paper along with their open-source implementations on our GitHub repository.
217
Despite the recent development of learning-based gaze estimation methods, most methods require one or more eye or face region crops as inputs and produce a gaze direction vector as output. Cropping results in a higher resolution in the eye regions and having fewer confounding factors (such as clothing and hair) is believed to benefit the final model performance. However, this eye/face patch cropping process is expensive, erroneous, and implementation-specific for different methods. In this paper, we propose a frame-to-gaze network that directly predicts both 3D gaze origin and 3D gaze direction from the raw frame out of the camera without any face or eye cropping. Our method demonstrates that direct gaze regression from the raw downscaled frame, from FHD/HD to VGA/HVGA resolution, is possible despite the challenges of having very few pixels in the eye region. The proposed method achieves comparable results to state-of-the-art methods in Point-of-Gaze (PoG) estimation on three public gaze datasets: GazeCapture, MPIIFaceGaze, and EVE, and generalizes well to extreme camera view changes.
Learning-based color enhancement approaches typically learn to map from input images to retouched images. Most of existing methods require expensive pairs of input-retouched images or produce results in a non-interpretable way. In this paper, we present a deep reinforcement learning (DRL) based method for color enhancement to explicitly model the step-wise nature of human retouching process. We cast a color enhancement process as a Markov Decision Process where actions are defined as global color adjustment operations. Then we train our agent to learn the optimal global enhancement sequence of the actions. In addition, we present a 'distort-and-recover' training scheme which only requires high-quality reference images for training instead of input and retouched image pairs. Given high-quality reference images, we distort the images' color distribution and form distorted-reference image pairs for training. Through extensive experiments, we show that our method produces decent enhancement results and our DRL approach is more suitable for the 'distort-and-recover' training scheme than previous supervised approaches. Supplementary material and code are available at this https URL
This paper introduces a novel approach to learning instance segmentation using extreme points, i.e., the topmost, leftmost, bottommost, and rightmost points, of each object. These points are readily available in the modern bounding box annotation process while offering strong clues for precise segmentation, and thus allows to improve performance at the same annotation cost with box-supervised methods. Our work considers extreme points as a part of the true instance mask and propagates them to identify potential foreground and background points, which are all together used for training a pseudo label generator. Then pseudo labels given by the generator are in turn used for supervised learning of our final model. On three public benchmarks, our method significantly outperforms existing box-supervised methods, further narrowing the gap with its fully supervised counterpart. In particular, our model generates high-quality masks when a target object is separated into multiple parts, where previous box-supervised methods often fail.
Computational pathology can lead to saving human lives, but models are annotation hungry and pathology images are notoriously expensive to annotate. Self-supervised learning has shown to be an effective method for utilizing unlabeled data, and its application to pathology could greatly benefit its downstream tasks. Yet, there are no principled studies that compare SSL methods and discuss how to adapt them for pathology. To address this need, we execute the largest-scale study of SSL pre-training on pathology image data, to date. Our study is conducted using 4 representative SSL methods on diverse downstream tasks. We establish that large-scale domain-aligned pre-training in pathology consistently out-performs ImageNet pre-training in standard SSL settings such as linear and fine-tuning evaluations, as well as in low-label regimes. Moreover, we propose a set of domain-specific techniques that we experimentally show leads to a performance boost. Lastly, for the first time, we apply SSL to the challenging task of nuclei instance segmentation and show large and consistent performance improvements under diverse settings.
83
Bayesian optimization (BO) has contributed greatly to improving model performance by suggesting promising hyperparameter configurations iteratively based on observations from multiple training trials. However, only partial knowledge (i.e., the measured performances of trained models and their hyperparameter configurations) from previous trials is transferred. On the other hand, Self-Distillation (SD) only transfers partial knowledge learned by the task model itself. To fully leverage the various knowledge gained from all training trials, we propose the BOSS framework, which combines BO and SD. BOSS suggests promising hyperparameter configurations through BO and carefully selects pre-trained models from previous trials for SD, which are otherwise abandoned in the conventional BO process. BOSS achieves significantly better performance than both BO and SD in a wide range of tasks including general image classification, learning with noisy labels, semi-supervised learning, and medical image analysis tasks.
10
Researchers at Lunit Inc. developed C3Det, an interactive deep learning framework for multi-class tiny-object detection that significantly reduces annotation effort for medical imaging and remote sensing tasks. The system leverages both local and global contextual information from sparse user inputs, achieving up to 2.85 times faster annotation times and 3.25 times fewer user interactions in real-world evaluations.
143
Deep learning has shown great potential in assisting radiologists in reading chest X-ray (CXR) images, but its need for expensive annotations for improving performance prevents widespread clinical application. Visual language pre-training (VLP) can alleviate the burden and cost of annotation by leveraging routinely generated reports for radiographs, which exist in large quantities as well as in paired form (image-text pairs). Additionally, extensions to localization-aware VLPs are being proposed to address the needs for accurate localization of abnormalities for computer-aided diagnosis (CAD) in CXR. However, we find that the formulation proposed by locality-aware VLP literature actually leads to a loss in spatial relationships required for downstream localization tasks. Therefore, we propose Empowering Locality of VLP with Intra-modal Similarity, ELVIS, a VLP aware of intra-modal locality, to better preserve the locality within radiographs or reports, which enhances the ability to comprehend location references in text reports. Our locality-aware VLP method significantly outperforms state-of-the art baselines in multiple segmentation tasks and the MS-CXR phrase grounding task. Qualitatively, we show that ELVIS focuses well on regions of interest described in the report text compared to prior approaches, allowing for enhanced interpretability.
When the trained physician interprets medical images, they understand the clinical importance of visual features. By applying cognitive attention, they apply greater focus onto clinically relevant regions while disregarding unnecessary features. The use of computer vision to automate the classification of medical images is widely studied. However, the standard convolutional neural network (CNN) does not necessarily employ subconscious feature relevancy evaluation techniques similar to the trained medical specialist and evaluates features more generally. Self-attention mechanisms enable CNNs to focus more on semantically important regions or aggregated relevant context with long-range dependencies. By using attention, medical image analysis systems can potentially become more robust by focusing on more important clinical feature regions. In this paper, we provide a comprehensive comparison of various state-of-the-art self-attention mechanisms across multiple medical image analysis tasks. Through both quantitative and qualitative evaluations along with a clinical user-centric survey study, we aim to provide a deeper understanding of the effects of self-attention in medical computer vision tasks.
To train the change detector, bi-temporal images taken at different times in the same area are used. However, collecting labeled bi-temporal images is expensive and time consuming. To solve this problem, various unsupervised change detection methods have been proposed, but they still require unlabeled bi-temporal images. In this paper, we propose unsupervised change detection based on image reconstruction loss using only unlabeled single temporal single image. The image reconstruction model is trained to reconstruct the original source image by receiving the source image and the photometrically transformed source image as a pair. During inference, the model receives bi-temporal images as the input, and tries to reconstruct one of the inputs. The changed region between bi-temporal images shows high reconstruction loss. Our change detector showed significant performance in various change detection benchmark datasets even though only a single temporal single source image was used. The code and trained models will be publicly available for reproducibility.
51
Ensuring reliable model performance across diverse domains is a critical challenge in computational pathology. A particular source of variability in Whole-Slide Images is introduced by differences in digital scanners, thus calling for better scanner generalization. This is critical for the real-world adoption of computational pathology, where the scanning devices may differ per institution or hospital, and the model should not be dependent on scanner-induced details, which can ultimately affect the patient's diagnosis and treatment planning. However, past efforts have primarily focused on standard domain generalization settings, evaluating on unseen scanners during training, without directly evaluating consistency across scanners for the same tissue. To overcome this limitation, we introduce SCORPION, a new dataset explicitly designed to evaluate model reliability under scanner variability. SCORPION includes 480 tissue samples, each scanned with 5 scanners, yielding 2,400 spatially aligned patches. This scanner-paired design allows for the isolation of scanner-induced variability, enabling a rigorous evaluation of model consistency while controlling for differences in tissue composition. Furthermore, we propose SimCons, a flexible framework that combines augmentation-based domain generalization techniques with a consistency loss to explicitly address scanner generalization. We empirically show that SimCons improves model consistency on varying scanners without compromising task-specific performance. By releasing the SCORPION dataset and proposing SimCons, we provide the research community with a crucial resource for evaluating and improving model consistency across diverse scanners, setting a new standard for reliability testing.
A major challenge for physically unconstrained gaze estimation is acquiring training data with 3D gaze annotations for in-the-wild and outdoor scenarios. In contrast, videos of human interactions in unconstrained environments are abundantly available and can be much more easily annotated with frame-level activity labels. In this work, we tackle the previously unexplored problem of weakly-supervised gaze estimation from videos of human interactions. We leverage the insight that strong gaze-related geometric constraints exist when people perform the activity of "looking at each other" (LAEO). To acquire viable 3D gaze supervision from LAEO labels, we propose a training algorithm along with several novel loss functions especially designed for the task. With weak supervision from two large scale CMU-Panoptic and AVA-LAEO activity datasets, we show significant improvements in (a) the accuracy of semi-supervised gaze estimation and (b) cross-domain generalization on the state-of-the-art physically unconstrained in-the-wild Gaze360 gaze estimation benchmark. We open source our code at this https URL
26
Real-world image recognition is often challenged by the variability of visual styles including object textures, lighting conditions, filter effects, etc. Although these variations have been deemed to be implicitly handled by more training data and deeper networks, recent advances in image style transfer suggest that it is also possible to explicitly manipulate the style information. Extending this idea to general visual recognition problems, we present Batch-Instance Normalization (BIN) to explicitly normalize unnecessary styles from images. Considering certain style features play an essential role in discriminative tasks, BIN learns to selectively normalize only disturbing styles while preserving useful styles. The proposed normalization module is easily incorporated into existing network architectures such as Residual Networks, and surprisingly improves the recognition performance in various scenarios. Furthermore, experiments verify that BIN effectively adapts to completely different tasks like object classification and style transfer, by controlling the trade-off between preserving and removing style variations. BIN can be implemented with only a few lines of code using popular deep learning frameworks.
78
Labeling a large set of data is expensive. Active learning aims to tackle this problem by asking to annotate only the most informative data from the unlabeled set. We propose a novel active learning approach that utilizes self-supervised pretext tasks and a unique data sampler to select data that are both difficult and representative. We discover that the loss of a simple self-supervised pretext task, such as rotation prediction, is closely correlated to the downstream task loss. Before the active learning iterations, the pretext task learner is trained on the unlabeled set, and the unlabeled data are sorted and split into batches by their pretext task losses. In each active learning iteration, the main task model is used to sample the most uncertain data in a batch to be annotated. We evaluate our method on various image classification and segmentation benchmarks and achieve compelling performances on CIFAR10, Caltech-101, ImageNet, and Cityscapes. We further show that our method performs well on imbalanced datasets, and can be an effective solution to the cold-start problem where active learning performance is affected by the randomly sampled initial labeled set.
54
Accurate segmentation of lung cancer in pathology slides is a critical step in improving patient care. We proposed the ACDC@LungHP (Automatic Cancer Detection and Classification in Whole-slide Lung Histopathology) challenge for evaluating different computer-aided diagnosis (CADs) methods on the automatic diagnosis of lung cancer. The ACDC@LungHP 2019 focused on segmentation (pixel-wise detection) of cancer tissue in whole slide imaging (WSI), using an annotated dataset of 150 training images and 50 test images from 200 patients. This paper reviews this challenge and summarizes the top 10 submitted methods for lung cancer segmentation. All methods were evaluated using the false positive rate, false negative rate, and DICE coefficient (DC). The DC ranged from 0.7354±\pm0.1149 to 0.8372±\pm0.0858. The DC of the best method was close to the inter-observer agreement (0.8398±\pm0.0890). All methods were based on deep learning and categorized into two groups: multi-model method and single model method. In general, multi-model methods were significantly better (p\textit{p}<0.010.01) than single model methods, with mean DC of 0.7966 and 0.7544, respectively. Deep learning based methods could potentially help pathologists find suspicious regions for further analysis of lung cancer in WSI.
Latent representation learned from multi-layered neural networks via hierarchical feature abstraction enables recent success of deep learning. Under the deep learning framework, generalization performance highly depends on the learned latent representation which is obtained from an appropriate training scenario with a task-specific objective on a designed network model. In this work, we propose a novel latent space modeling method to learn better latent representation. We designed a neural network model based on the assumption that good base representation can be attained by maximizing the total correlation between the input, latent, and output variables. From the base model, we introduce a semantic noise modeling method which enables class-conditional perturbation on latent space to enhance the representational power of learned latent feature. During training, latent vector representation can be stochastically perturbed by a modeled class-conditional additive noise while maintaining its original semantic feature. It implicitly brings the effect of semantic augmentation on the latent space. The proposed model can be easily learned by back-propagation with common gradient-based optimization algorithms. Experimental results show that the proposed method helps to achieve performance benefits against various previous approaches. We also provide the empirical analyses for the proposed class-conditional perturbation process including t-SNE visualization.
Recently, deep learning models have shown the potential to predict breast cancer risk and enable targeted screening strategies, but current models do not consider the change in the breast over time. In this paper, we present a new method, PRIME+, for breast cancer risk prediction that leverages prior mammograms using a transformer decoder, outperforming a state-of-the-art risk prediction method that only uses mammograms from a single time point. We validate our approach on a dataset with 16,113 exams and further demonstrate that it effectively captures patterns of changes from prior mammograms, such as changes in breast density, resulting in improved short-term and long-term breast cancer risk prediction. Experimental results show that our model achieves a statistically significant improvement in performance over the state-of-the-art based model, with a C-index increase from 0.68 to 0.73 (p < 0.05) on held-out test sets.
This paper aims to adapt the source model to the target environment, leveraging small user feedback (i.e., labeled target data) readily available in real-world applications. We find that existing semi-supervised domain adaptation (SemiSDA) methods often suffer from poorly improved adaptation performance when directly utilizing such feedback data, as shown in Figure 1. We analyze this phenomenon via a novel concept called Negatively Biased Feedback (NBF), which stems from the observation that user feedback is more likely for data points where the model produces incorrect predictions. To leverage this feedback while avoiding the issue, we propose a scalable adapting approach, Retrieval Latent Defending. This approach helps existing SemiSDA methods to adapt the model with a balanced supervised signal by utilizing latent defending samples throughout the adaptation process. We demonstrate the problem caused by NBF and the efficacy of our approach across various benchmarks, including image classification, semantic segmentation, and a real-world medical imaging application. Our extensive experiments reveal that integrating our approach with multiple state-of-the-art SemiSDA methods leads to significant performance improvements.
We present an image-conditional image generation model. The model transfers an input domain to a target domain in semantic level, and generates the target image in pixel level. To generate realistic target images, we employ the real/fake-discriminator as in Generative Adversarial Nets, but also introduce a novel domain-discriminator to make the generated image relevant to the input image. We verify our model through a challenging task of generating a piece of clothing from an input image of a dressed person. We present a high quality clothing dataset containing the two domains, and succeed in demonstrating decent results.
265
There are no more papers matching your filters at the moment.