NAVER CLOVA
Researchers from POSTECH and NAVER Cloud developed LUT-GEMM, a novel matrix multiplication kernel that accelerates Large Language Model inference by directly computing on sub-4-bit quantized weights using lookup tables. This method eliminates the dequantization step, yielding substantial speed-ups and enabling the deployment of large models like OPT-175B on a single GPU.
78
Researchers from NAVER CLOVA, NAVER AI Lab, and KAIST AI developed a memory management mechanism for conversational AI systems that maintains up-to-date user information across multiple conversation sessions, leading to more engaging and human-like interactions as shown by improved memorability scores. The approach uses a set of operations to selectively update or remove information from memory, addressing the challenge of outdated knowledge in long-term dialogues.
28
This paper introduces a solid state-of-the-art baseline for a class-incremental semantic segmentation (CISS) problem. While the recent CISS algorithms utilize variants of the knowledge distillation (KD) technique to tackle the problem, they failed to fully address the critical challenges in CISS causing the catastrophic forgetting; the semantic drift of the background class and the multi-label prediction issue. To better address these challenges, we propose a new method, dubbed SSUL-M (Semantic Segmentation with Unknown Label with Memory), by carefully combining techniques tailored for semantic segmentation. Specifically, we claim three main contributions. (1) defining unknown classes within the background class to help to learn future classes (help plasticity), (2) freezing backbone network and past classifiers with binary cross-entropy loss and pseudo-labeling to overcome catastrophic forgetting (help stability), and (3) utilizing tiny exemplar memory for the first time in CISS to improve both plasticity and stability. The extensively conducted experiments show the effectiveness of our method, achieving significantly better performance than the recent state-of-the-art baselines on the standard benchmark datasets. Furthermore, we justify our contributions with thorough ablation analyses and discuss different natures of the CISS problem compared to the traditional class-incremental learning targeting classification. The official code is available at this https URL.
61
Learning under a continuously changing data distribution with incorrect labels is a desirable real-world problem yet challenging. A large body of continual learning (CL) methods, however, assumes data streams with clean labels, and online learning scenarios under noisy data streams are yet underexplored. We consider a more practical CL task setup of an online learning from blurry data stream with corrupted labels, where existing CL methods struggle. To address the task, we first argue the importance of both diversity and purity of examples in the episodic memory of continual learning models. To balance diversity and purity in the episodic memory, we propose a novel strategy to manage and use the memory by a unified approach of label noise aware diverse sampling and robust learning with semi-supervised learning. Our empirical validations on four real-world or synthetic noise datasets (CIFAR10 and 100, mini-WebVision, and Food-101N) exhibit that our method significantly outperforms prior arts in this realistic and challenging continual learning scenario. Code and data splits are available in this https URL
Transformer-based models have recently shown success in representation learning on graph-structured data beyond natural language processing and computer vision. However, the success is limited to small-scale graphs due to the drawbacks of full dot-product attention on graphs such as the quadratic complexity with respect to the number of nodes and message aggregation from enormous irrelevant nodes. To address these issues, we propose Deformable Graph Transformer (DGT) that performs sparse attention via dynamically sampled relevant nodes for efficiently handling large-scale graphs with a linear complexity in the number of nodes. Specifically, our framework first constructs multiple node sequences with various criteria to consider both structural and semantic proximity. Then, combining with our learnable Katz Positional Encodings, the sparse attention is applied to the node sequences for learning node representations with a significantly reduced computational cost. Extensive experiments demonstrate that our DGT achieves state-of-the-art performance on 7 graph benchmark datasets with 2.5 - 449 times less computational cost compared to transformer-based graph models with full attention.
Time series models aim for accurate predictions of the future given the past, where the forecasts are used for important downstream tasks like business decision making. In practice, deep learning based time series models come in many forms, but at a high level learn some continuous representation of the past and use it to output point or probabilistic forecasts. In this paper, we introduce a novel autoregressive architecture, VQ-AR, which instead learns a \emph{discrete} set of representations that are used to predict the future. Extensive empirical comparison with other competitive deep learning models shows that surprisingly such a discrete set of representations gives state-of-the-art or equivalent results on a wide variety of time series datasets. We also highlight the shortcomings of this approach, explore its zero-shot generalization capabilities, and present an ablation study on the number of representations. The full source code of the method will be available at the time of publication with the hope that researchers can further investigate this important but overlooked inductive bias for the time series domain.
This paper introduces the Continuously-updated QA (CuQA) task to rigorously evaluate language models' ability to integrate large-scale knowledge updates while retaining existing information. It proposes a Plug-and-Play Adaptation method that employs selective activation of parameter-efficient modules, significantly mitigating catastrophic forgetting and robustly handling multiple, sequential knowledge updates.
5
Question Answering (QA) is a task that entails reasoning over natural language contexts, and many relevant works augment language models (LMs) with graph neural networks (GNNs) to encode the Knowledge Graph (KG) information. However, most existing GNN-based modules for QA do not take advantage of rich relational information of KGs and depend on limited information interaction between the LM and the KG. To address these issues, we propose Question Answering Transformer (QAT), which is designed to jointly reason over language and graphs with respect to entity relations in a unified manner. Specifically, QAT constructs Meta-Path tokens, which learn relation-centric embeddings based on diverse structural and semantic relations. Then, our Relation-Aware Self-Attention module comprehensively integrates different modalities via the Cross-Modal Relative Position Bias, which guides information exchange between relevant entites of different modalities. We validate the effectiveness of QAT on commonsense question answering datasets like CommonsenseQA and OpenBookQA, and on a medical question answering dataset, MedQA-USMLE. On all the datasets, our method achieves state-of-the-art performance. Our code is available at this http URL.
17
We propose a novel and effective purification based adversarial defense method against pre-processor blind white- and black-box attacks. Our method is computationally efficient and trained only with self-supervised learning on general images, without requiring any adversarial training or retraining of the classification model. We first show an empirical analysis on the adversarial noise, defined to be the residual between an original image and its adversarial example, has almost zero mean, symmetric distribution. Based on this observation, we propose a very simple iterative Gaussian Smoothing (GS) which can effectively smooth out adversarial noise and achieve substantially high robust accuracy. To further improve it, we propose Neural Contextual Iterative Smoothing (NCIS), which trains a blind-spot network (BSN) in a self-supervised manner to reconstruct the discriminative features of the original image that is also smoothed out by GS. From our extensive experiments on the large-scale ImageNet using four classification models, we show that our method achieves both competitive standard accuracy and state-of-the-art robust accuracy against most strong purifier-blind white- and black-box attacks. Also, we propose a new benchmark for evaluating a purification method based on commercial image classification APIs, such as AWS, Azure, Clarifai and Google. We generate adversarial examples by ensemble transfer-based black-box attack, which can induce complete misclassification of APIs, and demonstrate that our method can be used to increase adversarial robustness of APIs.
Large-scale pre-trained language models (PLMs) are well-known for being capable of solving a task simply by conditioning a few input-label pairs dubbed demonstrations on a prompt without being explicitly tuned for the desired downstream task. Such a process (i.e., in-context learning), however, naturally leads to high reliance on the demonstrations which are usually selected from external datasets. In this paper, we propose self-generated in-context learning (SG-ICL), which generates demonstrations for in-context learning from PLM itself to minimize the reliance on the external demonstration. We conduct experiments on four different text classification tasks and show SG-ICL significantly outperforms zero-shot learning and is generally worth approximately 0.6 gold training samples. Moreover, our generated demonstrations show more consistent performance with low variance compared to randomly selected demonstrations from the training dataset.
2
BROS, a pre-trained language model, enhances Key Information Extraction from documents by effectively combining text and layout information using relative positional encoding and a 2D-aware pre-training objective. It achieves competitive performance against multi-modal models while demonstrating robustness to text ordering errors and strong few-shot learning capabilities.
1
GPT-3 shows remarkable in-context learning ability of large-scale language models (LMs) trained on hundreds of billion scale data. Here we address some remaining issues less reported by the GPT-3 paper, such as a non-English LM, the performances of different sized models, and the effect of recently introduced prompt optimization on in-context learning. To achieve this, we introduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centric corpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVA with our training configuration shows state-of-the-art in-context zero-shot and few-shot learning performances on various downstream tasks in Korean. Also, we show the performance benefits of prompt-based learning and demonstrate how it can be integrated into the prompt engineering pipeline. Then we discuss the possibility of materializing the No Code AI paradigm by providing AI prototyping capabilities to non-experts of ML by introducing HyperCLOVA studio, an interactive prompt engineering interface. Lastly, we demonstrate the potential of our methods with three successful in-house applications.
Recently, self-supervised methods show remarkable achievements in image-level representation learning. Nevertheless, their image-level self-supervisions lead the learned representation to sub-optimal for dense prediction tasks, such as object detection, instance segmentation, etc. To tackle this issue, several recent self-supervised learning methods have extended image-level single embedding to pixel-level dense embeddings. Unlike image-level representation learning, due to the spatial deformation of augmentation, it is difficult to sample pixel-level positive pairs. Previous studies have sampled pixel-level positive pairs using the winner-takes-all among similarity or thresholding warped distance between dense embeddings. However, these naive methods can be struggled by background clutter and outliers problems. In this paper, we introduce Hough Contrastive Learning (HoughCL), a Hough space based method that enforces geometric consistency between two dense features. HoughCL achieves robustness against background clutter and outliers. Furthermore, compared to baseline, our dense positive pairing method has no additional learnable parameters and has a small extra computation cost. Compared to previous works, our method shows better or comparable performance on dense prediction fine-tuning tasks.
NAVER Corporation developed ShopperBERT, a model that learns general-purpose user representations by adapting the BERT architecture to large-scale e-commerce purchase histories. These pretrained user embeddings generally outperform task-specific models across six diverse downstream e-commerce tasks, showing notable gains in cold-start scenarios and demonstrating performance improvements directly tied to the scale of pretraining data.
A few-shot font generation (FFG) method has to satisfy two objectives: the generated images should preserve the underlying global structure of the target character and present the diverse local reference style. Existing FFG methods aim to disentangle content and style either by extracting a universal representation style or extracting multiple component-wise style representations. However, previous methods either fail to capture diverse local styles or cannot be generalized to a character with unseen components, e.g., unseen language systems. To mitigate the issues, we propose a novel FFG method, named Multiple Localized Experts Few-shot Font Generation Network (MX-Font). MX-Font extracts multiple style features not explicitly conditioned on component labels, but automatically by multiple experts to represent different local concepts, e.g., left-side sub-glyph. Owing to the multiple experts, MX-Font can capture diverse local concepts and show the generalizability to unseen languages. During training, we utilize component labels as weak supervision to guide each expert to be specialized for different local concepts. We formulate the component assign problem to each expert as the graph matching problem, and solve it by the Hungarian algorithm. We also employ the independence loss and the content-style adversarial loss to impose the content-style disentanglement. In our experiments, MX-Font outperforms previous state-of-the-art FFG methods in the Chinese generation and cross-lingual, e.g., Chinese to Korean, generation. Source code is available at this https URL
155
Recent studies have proposed unified user modeling frameworks that leverage user behavior data from various applications. Many of them benefit from utilizing users' behavior sequences as plain texts, representing rich information in any domain or system without losing generality. Hence, a question arises: Can language modeling for user history corpus help improve recommender systems? While its versatile usability has been widely investigated in many domains, its applications to recommender systems still remain underexplored. We show that language modeling applied directly to task-specific user histories achieves excellent results on diverse recommendation tasks. Also, leveraging additional task-agnostic user histories delivers significant performance benefits. We further demonstrate that our approach can provide promising transfer learning capabilities for a broad spectrum of real-world recommender systems, even on unseen domains and services.
Recent end-to-end scene text spotters have achieved great improvement in recognizing arbitrary-shaped text instances. Common approaches for text spotting use region of interest pooling or segmentation masks to restrict features to single text instances. However, this makes it hard for the recognizer to decode correct sequences when the detection is not accurate i.e. one or more characters are cropped out. Considering that it is hard to accurately decide word boundaries with only the detector, we propose a novel Detection-agnostic End-to-End Recognizer, DEER, framework. The proposed method reduces the tight dependency between detection and recognition modules by bridging them with a single reference point for each text instance, instead of using detected regions. The proposed method allows the decoder to recognize the texts that are indicated by the reference point, with features from the whole image. Since only a single point is required to recognize the text, the proposed method enables text spotting without an arbitrarily-shaped detector or bounding polygon annotations. Experimental results present that the proposed method achieves competitive results on regular and arbitrarily-shaped text spotting benchmarks. Further analysis shows that DEER is robust to the detection errors. The code and dataset will be publicly available.
Automatic few-shot font generation aims to solve a well-defined, real-world problem because manual font designs are expensive and sensitive to the expertise of designers. Existing methods learn to disentangle style and content elements by developing a universal style representation for each font style. However, this approach limits the model in representing diverse local styles, because it is unsuitable for complicated letter systems, for example, Chinese, whose characters consist of a varying number of components (often called "radical") -- with a highly complex structure. In this paper, we propose a novel font generation method that learns localized styles, namely component-wise style representations, instead of universal styles. The proposed style representations enable the synthesis of complex local details in text designs. However, learning component-wise styles solely from a few reference glyphs is infeasible when a target script has a large number of components, for example, over 200 for Chinese. To reduce the number of required reference glyphs, we represent component-wise styles by a product of component and style factors, inspired by low-rank matrix factorization. Owing to the combination of strong representation and a compact factorization strategy, our method shows remarkably better few-shot font generation results (with only eight reference glyphs) than other state-of-the-art methods. Moreover, strong locality supervision, for example, location of each component, skeleton, or strokes, was not utilized. The source code is available at this https URL and this https URL
Current natural language interaction for self-tracking tools largely depends on bespoke implementation optimized for a specific tracking theme and data format, which is neither generalizable nor scalable to a tremendous design space of self-tracking. However, training machine learning models in the context of self-tracking is challenging due to the wide variety of tracking topics and data formats. In this paper, we propose a novel NLP task for self-tracking that extracts close- and open-ended information from a retrospective activity log described as a plain text, and a domain-agnostic, GPT-3-based NLU framework that performs this task. The framework augments the prompt using synthetic samples to transform the task into 10-shot learning, to address a cold-start problem in bootstrapping a new tracking topic. Our preliminary evaluation suggests that our approach significantly outperforms the baseline QA models. Going further, we discuss future application domains toward which the NLP and HCI researchers can collaborate.
Despite recent explosion of interests in in-context learning, the underlying mechanism and the precise impact of the quality of demonstrations remain elusive. Intuitively, ground-truth labels should have as much impact in in-context learning (ICL) as supervised learning, but recent work reported that the input-label correspondence is significantly less important than previously thought. Intrigued by this counter-intuitive observation, we re-examine the importance of ground-truth labels in in-context learning. With the introduction of two novel metrics, namely Label-Correctness Sensitivity and Ground-truth Label Effect Ratio (GLER), we were able to conduct quantifiable analysis on the impact of ground-truth label demonstrations. Through extensive analyses, we find that the correct input-label mappings can have varying impacts on the downstream in-context learning performances, depending on the experimental configuration. Through additional studies, we identify key components, such as the verbosity of prompt templates and the language model size, as the controlling factor to achieve more noise-resilient ICL.
There are no more papers matching your filters at the moment.