Taibah University
Mainstream large vision-language models (LVLMs) inherently encode cultural biases, highlighting the need for diverse multimodal datasets. To address this gap, we introduce PEARL, a large-scale Arabic multimodal dataset and benchmark explicitly designed for cultural understanding. Constructed through advanced agentic workflows and extensive human-in-the-loop annotations by 37 annotators from across the Arab world, PEARL comprises over 309K multimodal examples spanning ten culturally significant domains covering all Arab countries. We further provide two robust evaluation benchmarks (PEARL and PEARL-LITE) along with a specialized subset (PEARL-X) explicitly developed to assess nuanced cultural variations. Comprehensive evaluations on state-of-the-art open and proprietary LVLMs demonstrate that reasoning-centric instruction alignment substantially improves models' cultural grounding compared to conventional scaling methods. PEARL establishes a foundational resource for advancing culturally-informed multimodal modeling research. All datasets and benchmarks are publicly available.
Recent technological advances in smartphones and communications, including the growth of such online platforms as massive social media networks such as X (formerly known as Twitter) endangers young people and their emotional well-being by exposing them to cyberbullying, taunting, and bullying content. Most proposed approaches for automatically detecting cyberbullying have been developed around the English language, and methods for detecting Arabic-language cyberbullying are scarce. Methods for detecting Arabic-language cyberbullying are especially scarce. This paper aims to enhance the effectiveness of methods for detecting cyberbullying in Arabic-language content. We assembled a dataset of 10,662 X posts, pre-processed the data, and used the kappa tool to verify and enhance the quality of our annotations. We conducted four experiments to test numerous deep learning models for automatically detecting Arabic-language cyberbullying. We first tested a long short-term memory (LSTM) model and a bidirectional long short-term memory (Bi-LSTM) model with several experimental word embeddings. We also tested the LSTM and Bi-LSTM models with a novel pre-trained bidirectional encoder from representations (BERT) and then tested them on a different experimental models BERT again. LSTM-BERT and Bi-LSTM-BERT demonstrated a 97% accuracy. Bi-LSTM with FastText embedding word performed even better, achieving 98% accuracy. As a result, the outcomes are generalize
An investigation into explainable artificial intelligence (XAI) for medical image classification empirically demonstrates how methods like Grad-CAM and SHAP provide transparent insights into AI decisions, quantitatively evaluating their performance and efficiency across diverse medical datasets to foster clinical trust.
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing; however, they often struggle to accurately capture and reflect cultural nuances. This research addresses this challenge by focusing on Saudi Arabia, a country characterized by diverse dialects and rich cultural traditions. We introduce SaudiCulture, a novel benchmark designed to evaluate the cultural competence of LLMs within the distinct geographical and cultural contexts of Saudi Arabia. SaudiCulture is a comprehensive dataset of questions covering five major geographical regions, such as West, East, South, North, and Center, along with general questions applicable across all regions. The dataset encompasses a broad spectrum of cultural domains, including food, clothing, entertainment, celebrations, and crafts. To ensure a rigorous evaluation, SaudiCulture includes questions of varying complexity, such as open-ended, single-choice, and multiple-choice formats, with some requiring multiple correct answers. Additionally, the dataset distinguishes between common cultural knowledge and specialized regional aspects. We conduct extensive evaluations on five LLMs, such as GPT-4, Llama 3.3, FANAR, Jais, and AceGPT, analyzing their performance across different question types and cultural contexts. Our findings reveal that all models experience significant performance declines when faced with highly specialized or region-specific questions, particularly those requiring multiple correct responses. Additionally, certain cultural categories are more easily identifiable than others, further highlighting inconsistencies in LLMs cultural understanding. These results emphasize the importance of incorporating region-specific knowledge into LLMs training to enhance their cultural competence.
Objective. This paper presents an overview of generalizable and explainable artificial intelligence (XAI) in deep learning (DL) for medical imaging, aimed at addressing the urgent need for transparency and explainability in clinical applications. Methodology. We propose to use four CNNs in three medical datasets (brain tumor, skin cancer, and chest x-ray) for medical image classification tasks. In addition, we perform paired t-tests to show the significance of the differences observed between different methods. Furthermore, we propose to combine ResNet50 with five common XAI techniques to obtain explainable results for model prediction, aiming at improving model transparency. We also involve a quantitative metric (confidence increase) to evaluate the usefulness of XAI techniques. Key findings. The experimental results indicate that ResNet50 can achieve feasible accuracy and F1 score in all datasets (e.g., 86.31\% accuracy in skin cancer). Furthermore, the findings show that while certain XAI methods, such as XgradCAM, effectively highlight relevant abnormal regions in medical images, others, like EigenGradCAM, may perform less effectively in specific scenarios. In addition, XgradCAM indicates higher confidence increase (e.g., 0.12 in glioma tumor) compared to GradCAM++ (0.09) and LayerCAM (0.08). Implications. Based on the experimental results and recent advancements, we outline future research directions to enhance the robustness and generalizability of DL models in the field of biomedical imaging.
Despite the remarkable performance of supervised medical image segmentation models, relying on a large amount of labeled data is impractical in real-world situations. Semi-supervised learning approaches aim to alleviate this challenge using unlabeled data through pseudo-label generation. Yet, existing semi-supervised segmentation methods still suffer from noisy pseudo-labels and insufficient supervision within the feature space. To solve these challenges, this paper proposes a novel semi-supervised 3D medical image segmentation framework based on a dual-network architecture. Specifically, we investigate a Cross Consistency Enhancement module using both cross pseudo and entropy-filtered supervision to reduce the noisy pseudo-labels, while we design a dynamic weighting strategy to adjust the contributions of pseudo-labels using an uncertainty-aware mechanism (i.e., Kullback-Leibler divergence). In addition, we use a self-supervised contrastive learning mechanism to align uncertain voxel features with reliable class prototypes by effectively differentiating between trustworthy and uncertain predictions, thus reducing prediction uncertainty. Extensive experiments are conducted on three 3D segmentation datasets, Left Atrial, NIH Pancreas and BraTS-2019. The proposed approach consistently exhibits superior performance across various settings (e.g., 89.95\% Dice score on left Atrial with 10\% labeled data) compared to the state-of-the-art methods. Furthermore, the usefulness of the proposed modules is further validated via ablation experiments.
In this paper, we introduce SaudiBERT, a monodialect Arabic language model pretrained exclusively on Saudi dialectal text. To demonstrate the model's effectiveness, we compared SaudiBERT with six different multidialect Arabic language models across 11 evaluation datasets, which are divided into two groups: sentiment analysis and text classification. SaudiBERT achieved average F1-scores of 86.15\% and 87.86\% in these groups respectively, significantly outperforming all other comparative models. Additionally, we present two novel Saudi dialectal corpora: the Saudi Tweets Mega Corpus (STMC), which contains over 141 million tweets in Saudi dialect, and the Saudi Forums Corpus (SFC), which includes 15.2 GB of text collected from five Saudi online forums. Both corpora are used in pretraining the proposed model, and they are the largest Saudi dialectal corpora ever reported in the literature. The results confirm the effectiveness of SaudiBERT in understanding and analyzing Arabic text expressed in Saudi dialect, achieving state-of-the-art results in most tasks and surpassing other language models included in the study. SaudiBERT model is publicly available on \url{this https URL}.
This study presents EgyBERT, an Arabic language model pretrained on 10.4 GB of Egyptian dialectal texts. We evaluated EgyBERT's performance by comparing it with five other multidialect Arabic language models across 10 evaluation datasets. EgyBERT achieved the highest average F1-score of 84.25% and an accuracy of 87.33%, significantly outperforming all other comparative models, with MARBERTv2 as the second best model achieving an F1-score 83.68% and an accuracy 87.19%. Additionally, we introduce two novel Egyptian dialectal corpora: the Egyptian Tweets Corpus (ETC), containing over 34.33 million tweets (24.89 million sentences) amounting to 2.5 GB of text, and the Egyptian Forums Corpus (EFC), comprising over 44.42 million sentences (7.9 GB of text) collected from various Egyptian online forums. Both corpora are used in pretraining the new model, and they are the largest Egyptian dialectal corpora to date reported in the literature. Furthermore, this is the first study to evaluate the performance of various language models on Egyptian dialect datasets, revealing significant differences in performance that highlight the need for more dialect-specific models. The results confirm the effectiveness of EgyBERT model in processing and analyzing Arabic text expressed in Egyptian dialect, surpassing other language models included in the study. EgyBERT model is publicly available on \url{this https URL}.
An appealing feature of blockchain technology is smart contracts. A smart contract is executable code that runs on top of the blockchain to facilitate, execute and enforce an agreement between untrusted parties without the involvement of a trusted third party. In this paper, we conduct a systematic mapping study to collect all research that is relevant to smart contracts from a technical perspective. The aim of doing so is to identify current research topics and open challenges for future studies in smart contract research. We extract 24 papers from different scientific databases. The results show that about two thirds of the papers focus on identifying and tackling smart contract issues. Four key issues are identified, namely, codifying, security, privacy and performance issues. The rest of the papers focuses on smart contract applications or other smart contract related topics. Research gaps that need to be addressed in future studies are provided.
Arabic poetry, with its rich linguistic features and profound cultural significance, presents a unique challenge to the Natural Language Processing (NLP) field. The complexity of its structure and context necessitates advanced computational models for accurate analysis. In this paper, we introduce AraPoemBERT, an Arabic language model pretrained exclusively on Arabic poetry text. To demonstrate the effectiveness of the proposed model, we compared AraPoemBERT with 5 different Arabic language models on various NLP tasks related to Arabic poetry. The new model outperformed all other models and achieved state-of-the-art results in most of the downstream tasks. AraPoemBERT achieved unprecedented accuracy in two out of three novel tasks: poet's gender classification (99.34\% accuracy), and poetry sub-meter classification (97.79\% accuracy). In addition, the model achieved an accuracy score in poems' rhyme classification (97.73\% accuracy) which is almost equivalent to the best score reported in this study. Moreover, the proposed model significantly outperformed previous work and other comparative models in the tasks of poems' sentiment analysis, achieving an accuracy of 78.95\%, and poetry meter classification (99.03\% accuracy), while significantly expanding the scope of these two problems. The dataset used in this study, contains more than 2.09 million verses collected from online sources, each associated with various attributes such as meter, sub-meter, poet, rhyme, and topic. The results demonstrate the effectiveness of the proposed model in understanding and analyzing Arabic poetry, achieving state-of-the-art results in several tasks and outperforming previous works and other language models included in the study. AraPoemBERT model is publicly available on \url{this https URL}.
Artificial intelligence (AI) continues to transform data analysis in many domains. Progress in each domain is driven by a growing body of annotated data, increased computational resources, and technological innovations. In medicine, the sensitivity of the data, the complexity of the tasks, the potentially high stakes, and a requirement of accountability give rise to a particular set of challenges. In this review, we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making. (1) Explainable AI aims to produce a human-interpretable justification for each output. Such models increase confidence if the results appear plausible and match the clinicians expectations. However, the absence of a plausible explanation does not imply an inaccurate model. Especially in highly non-linear, complex models that are tuned to maximize accuracy, such interpretable representations only reflect a small portion of the justification. (2) Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains. For example, a classification task based on images acquired on different acquisition hardware. (3) Federated learning enables learning large-scale models without exposing sensitive personal health information. Unlike centralized AI learning, where the centralized learning machine has access to the entire training data, the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates, not personal health data. This narrative review covers the basic concepts, highlights relevant corner-stone and state-of-the-art research in the field, and discusses perspectives.
The growing interest in satellite imagery has triggered the need for efficient mechanisms to extract valuable information from these vast data sources, providing deeper insights. Even though deep learning has shown significant progress in satellite image classification. Nevertheless, in the literature, only a few results can be found on weight initialization techniques. These techniques traditionally involve initializing the networks' weights before training on extensive datasets, distinct from fine-tuning the weights of pre-trained networks. In this study, a novel weight initialization method is proposed in the context of satellite image classification. The proposed weight initialization method is mathematically detailed during the forward and backward passes of the convolutional neural network (CNN) model. Extensive experiments are carried out using six real-world datasets. Comparative analyses with existing weight initialization techniques made on various well-known CNN models reveal that the proposed weight initialization technique outperforms the previous competitive techniques in classification accuracy. The complete code of the proposed technique, along with the obtained results, is available at this https URL
Due to an exponential increase in the number of cyber-attacks, the need for improved Intrusion Detection Systems (IDS) is apparent than ever. In this regard, Machine Learning (ML) techniques are playing a pivotal role in the early classification of the attacks in case of intrusion detection within the system. However, due to a large number of algorithms available, the selection of the right method is a challenging task. To resolve this issue, this paper analyses some of the current state-of-the-art intrusion detection methods and discusses their pros and cons. Further, a review of different ML methods is carried out with four methods showing to be the most suitable one for classifying attacks. Several algorithms are selected and investigated to evaluate the performance of IDS. These IDS classifies binary and multiclass attacks in terms of detecting whether or not the traffic has been considered as benign or an attack. The experimental results demonstrate that binary classification has greater consistency in their accuracy results which ranged from 0.9938 to 0.9977, while multiclass ranges from 0.9294 to 0.9983. However, it has been also observed that multiclass provides the best results with the algorithm k-Nearest neighbor giving an accuracy score of 0.9983 while the binary classification highest score is 0.9977 from Random Forest. The experimental results demonstrate that multiclass classification produces better performance in terms of intrusion detection by specifically differentiating between the attacks and allowing a more targeted response to an attack.
Despite the remarkable performance of supervised medical image segmentation models, relying on a large amount of labeled data is impractical in real-world situations. Semi-supervised learning approaches aim to alleviate this challenge using unlabeled data through pseudo-label generation. Yet, existing semi-supervised segmentation methods still suffer from noisy pseudo-labels and insufficient supervision within the feature space. To solve these challenges, this paper proposes a novel semi-supervised 3D medical image segmentation framework based on a dual-network architecture. Specifically, we investigate a Cross Consistency Enhancement module using both cross pseudo and entropy-filtered supervision to reduce the noisy pseudo-labels, while we design a dynamic weighting strategy to adjust the contributions of pseudo-labels using an uncertainty-aware mechanism (i.e., Kullback-Leibler divergence). In addition, we use a self-supervised contrastive learning mechanism to align uncertain voxel features with reliable class prototypes by effectively differentiating between trustworthy and uncertain predictions, thus reducing prediction uncertainty. Extensive experiments are conducted on three 3D segmentation datasets, Left Atrial, NIH Pancreas and BraTS-2019. The proposed approach consistently exhibits superior performance across various settings (e.g., 89.95\% Dice score on left Atrial with 10\% labeled data) compared to the state-of-the-art methods. Furthermore, the usefulness of the proposed modules is further validated via ablation experiments.
During the last decade, several research works have focused on providing novel deep learning methods in many application fields. However, few of them have investigated the weight initialization process for deep learning, although its importance is revealed in improving deep learning performance. This can be justified by the technical difficulties in proposing new techniques for this promising research field. In this paper, a survey related to weight initialization techniques for deep algorithms in remote sensing is conducted. This survey will help practitioners to drive further research in this promising field. To the best of our knowledge, this paper constitutes the first survey focusing on weight initialization for deep learning models.
Despite the remarkable performance of vision language models (VLMs) such as Contrastive Language Image Pre-training (CLIP), the large size of these models is a considerable obstacle to their use in federated learning (FL) systems where the parameters of local client models need to be transferred to a global server for aggregation. Another challenge in FL is the heterogeneity of data from different clients, which affects the generalization performance of the solution. In addition, natural pre-trained VLMs exhibit poor generalization ability in the medical datasets, suggests there exists a domain gap. To solve these issues, we introduce a novel method for the Federated Adversarial Adaptation (FAA) of CLIP. Our method, named FAA-CLIP, handles the large communication costs of CLIP using a light-weight feature adaptation module (FAM) for aggregation, effectively adapting this VLM to each client's data while greatly reducing the number of parameters to transfer. By keeping CLIP frozen and only updating the FAM parameters, our method is also computationally efficient. Unlike existing approaches, our FAA-CLIP method directly addresses the problem of domain shifts across clients via a domain adaptation (DA) module. This module employs a domain classifier to predict if a given sample is from the local client or the global server, allowing the model to learn domain-invariant representations. Extensive experiments on six different datasets containing both natural and medical images demonstrate that FAA-CLIP can generalize well on both natural and medical datasets compared to recent FL approaches. Our codes are available at this https URL
Domain adaptation (DA) techniques have the potential in machine learning to alleviate distribution differences between training and test sets by leveraging information from source domains. In image classification, most advances in DA have been made using natural images rather than medical data, which are harder to work with. Moreover, even for natural images, the use of mainstream datasets can lead to performance bias. {With the aim of better understanding the benefits of DA for both natural and medical images, this study performs 557 simulation studies using seven widely-used DA techniques for image classification in five natural and eight medical datasets that cover various scenarios, such as out-of-distribution, dynamic data streams, and limited training samples.} Our experiments yield detailed results and insightful observations highlighting the performance and medical applicability of these techniques. Notably, our results have shown the outstanding performance of the Deep Subdomain Adaptation Network (DSAN) algorithm. This algorithm achieved feasible classification accuracy (91.2\%) in the COVID-19 dataset using Resnet50 and showed an important accuracy improvement in the dynamic data stream DA scenario (+6.7\%) compared to the baseline. Our results also demonstrate that DSAN exhibits remarkable level of explainability when evaluated on COVID-19 and skin cancer datasets. These results contribute to the understanding of DA techniques and offer valuable insight into the effective adaptation of models to medical data.
Vesicoureteral reflux (VUR) is traditionally assessed using subjective grading systems, which introduces variability in diagnosis. This study investigates the use of machine learning to improve diagnostic consistency by analyzing voiding cystourethrogram (VCUG) images. A total of 113 VCUG images were reviewed, with expert grading of VUR severity. Nine image-based features were selected to train six predictive models: Logistic Regression, Decision Tree, Gradient Boosting, Neural Network, and Stochastic Gradient Descent. The models were evaluated using leave-one-out cross-validation. Analysis identified deformation patterns in the renal calyces as key indicators of high-grade VUR. All models achieved accurate classifications with no false positives or negatives. High sensitivity to subtle image patterns characteristic of different VUR grades was confirmed by substantial Area Under the Curve (AUC) values. The results suggest that machine learning can offer an objective and standardized alternative to current subjective VUR assessments. These findings highlight renal calyceal deformation as a strong predictor of severe cases. Future research should aim to expand the dataset, refine imaging features, and improve model generalizability for broader clinical use.
A general concept of 3D volumetric visualization systems is described based on 3D discrete voxel scenes (worlds) representation. Definitions of 3D discrete voxel scene (world) basic elements and main steps of the image synthesis algorithm are formulated. An algorithm for solving the problem of the voxelized world 3D image synthesis, intended for the systems of volumetric spatial visualization, is proposed. A computer-based architecture for 3D volumetric visualization of 3D discrete voxel world is presented. On the basis of the proposed overall concept of discrete voxel representation, the proposed architecture successfully adapts the ray tracing technique for the synthesis of 3D volumetric images. Since it is algorithmically simple and effectively supports parallelism, it can efficiently be implemented. Key words:Volumetric spatial visualization, 3D volumetric imagesynthesis, discrete voxel world, ray tracing.
The paper presents a parallel implementation of existing image fusion methods on a graphical cluster. Parallel implementations of methods based on discrete wavelet transformation (Haars and Daubechies discrete wavelet transform) are developed. Experiments were performed on a cluster using GPU and CPU and performance gains were estimated for the use of the developed parallel implementations to process satellite images from satellite Landsat 7. The implementation on a graphic cluster provides performance improvement from 2 to 18 times. The quality of the considered methods was evaluated by ERGAS and QNR metrics. The results show performance gains and retaining of quality with the cluster of GPU compared to the results obtained by the authors and other researchers for a CPU and single GPU.
There are no more papers matching your filters at the moment.