Università di Genova
California Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloUniversity of Cambridge logoUniversity of CambridgeUniversity of VictoriaChinese Academy of Sciences logoChinese Academy of SciencesUniversity of ZurichTel Aviv University logoTel Aviv UniversityUniversity of Oxford logoUniversity of OxfordUniversity of Science and Technology of China logoUniversity of Science and Technology of ChinaScuola Normale SuperioreUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghThe University of Texas at Austin logoThe University of Texas at AustinINFN logoINFNETH Zürich logoETH ZürichYonsei UniversityUniversity of CreteKavli Institute for the Physics and Mathematics of the UniverseUniversität HeidelbergUniversity of Maryland logoUniversity of MarylandUniversidad Autónoma de MadridUniversité Paris-Saclay logoUniversité Paris-SaclayStockholm University logoStockholm UniversityUniversity of HelsinkiUniversity of Arizona logoUniversity of ArizonaUniversity of Western AustraliaUniversity of SheffieldPrinceton University logoPrinceton UniversityUniversity of GenevaUniversity of PortsmouthUniversity of IcelandUniversità di GenovaUniversidade do PortoUniversity of SussexINAFAix Marseille UniversityNiels Bohr InstituteUniversity of JyväskyläUniversity of PadovaJet Propulsion LaboratoryJagiellonian UniversityInstituto de Astrofísica de CanariasUniversity of the WitwatersrandUniversity of NottinghamEuropean Space AgencyUniversity of Cape TownSISSANicolaus Copernicus Astronomical CenterObservatoire de la Côte d’AzurUniversity of Hawai’iUniversity of KwaZulu-NatalLudwig-Maximilians-UniversitätLaboratoire d’Astrophysique de MarseilleINAF-Istituto di RadioastronomiaINAF – Osservatorio Astronomico di RomaInstitut de Física d’Altes Energies (IFAE)Laboratoire de Physique des 2 Infinis Irène Joliot-CurieOsservatorio Astronomico della Regione Autonoma Valle d’AostaINAF - Osservatorio Astrofisico di CataniaINAF - Osservatorio Astronomico di ArcetriInstitut d’Astrophysique SpatialeNASADTU SpaceThe Queen’s University of BelfastInstituto de Astrofísica e Ciências do Espaço, Universidade de LisboaIRAP, Université de Toulouse, CNRS, CNESETH, Institute for AstronomyINAF-IASF, BolognaCosmic Dawn Center(DAWN)Universit degli Studi di FerraraUniversit de ParisUniversit Claude Bernard Lyon 1Excellence Cluster ‘Origins’Universit de LyonUniversit di PisaIFCA-CSIC-UCINAF Osservatorio Astronomico di PadovaUniversit degli Studi di FirenzeUniversit de MontpellierUniversit degli Studi di Napoli Federico IIUniversit di Roma Tor VergataINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaUniversit Di BolognaINAF ` Osservatorio Astronomico di TriesteUniversit degli Studi di Trieste
Verifying the fully kinematic nature of the cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the inflationary expansion the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole component would thus reflect the preinflationary structure of spacetime probing the extent of the FLRW applicability. Cosmic backgrounds from galaxies after the matter-radiation decoupling, should have kinematic dipole component identical in velocity with the CMB kinematic dipole. Comparing the two can lead to isolating the CMB non-kinematic dipole. It was recently proposed that such measurement can be done using the near-IR cosmic infrared background (CIB) measured with the currently operating Euclid telescope, and later with Roman. The proposed method reconstructs the resolved CIB, the Integrated Galaxy Light (IGL), from Euclid's Wide Survey and probes its dipole, with a kinematic component amplified over that of the CMB by the Compton-Getting effect. The amplification coupled with the extensive galaxy samples forming the IGL would determine the CIB dipole with an overwhelming signal/noise, isolating its direction to sub-degree accuracy. We develop details of the method for Euclid's Wide Survey in 4 bands spanning 0.6 to 2 mic. We isolate the systematic and other uncertainties and present methodologies to minimize them, after confining the sample to the magnitude range with negligible IGL/CIB dipole from galaxy clustering. These include the required star-galaxy separation, accounting for the extinction correction dipole using the method newly developed here achieving total separation, accounting for the Earth's orbital motion and other systematic effects. (Abridged)
A survey systematically reviews imitation learning (IL) research for contact-rich robotic tasks, detailing demonstration collection, learning algorithms, and real-world applications. It highlights the growing role of multimodal data and foundation models in advancing robotic capabilities for complex physical interactions, while also identifying key challenges and future directions in the field.
This paper introduces a novel Model Predictive Control (MPC) implementation for legged robot locomotion that leverages GPU parallelization. Our approach enables both temporal and state-space parallelization by incorporating a parallel associative scan to solve the primal-dual Karush-Kuhn-Tucker (KKT) system. In this way, the optimal control problem is solved in O(nlogN+m)\mathcal{O}(n\log{N} + m) complexity, instead of O(N(n+m)3)\mathcal{O}(N(n + m)^3), where nn, mm, and NN are the dimension of the system state, control vector, and the length of the prediction horizon. We demonstrate the advantages of this implementation over two state-of-the-art solvers (acados and crocoddyl), achieving up to a 60\% improvement in runtime for Whole Body Dynamics (WB)-MPC and a 700\% improvement for Single Rigid Body Dynamics (SRBD)-MPC when varying the prediction horizon length. The presented formulation scales efficiently with the problem state dimensions as well, enabling the definition of a centralized controller for up to 16 legged robots that can be computed in less than 25 ms. Furthermore, thanks to the JAX implementation, the solver supports large-scale parallelization across multiple environments, allowing the possibility of performing learning with the MPC in the loop directly in GPU.
143
We study the dynamics and phase structure of Abelian gauge theories in d=1+1d=1+1 dimensions. These include U(1)U(1) gauge theory coupled to a scalar and a fermion, as well as the two-flavour Schwinger model with different charges. Both theories exhibit a surprisingly rich phase diagram as masses are varied, with both c=1c=1 and c=1/2c=1/2 critical lines or points. We build up to the study of 2d chiral gauge theories, which hold particular interest because they provide a mechanism for symmetric mass generation, a phenomenon in which fermions become gapped without breaking chiral symmetries.
University of Washington logoUniversity of WashingtonCNRS logoCNRSUniversity of Toronto logoUniversity of TorontoUniversity of MississippiUniversity of CincinnatiCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Cambridge logoUniversity of CambridgeINFN Sezione di NapoliMonash University logoMonash UniversityNational Central UniversityNational Astronomical Observatory of JapanVanderbilt UniversityUniversity of Notre Dame logoUniversity of Notre DameTel Aviv University logoTel Aviv UniversityUniversity College London logoUniversity College LondonNikhefGeorgia Institute of Technology logoGeorgia Institute of TechnologyUniversity of Science and Technology of China logoUniversity of Science and Technology of ChinaTsinghua University logoTsinghua UniversityThe Chinese University of Hong Kong logoThe Chinese University of Hong KongUniversity of MelbourneThe University of Texas at Austin logoThe University of Texas at AustinUniversity of WarsawPeking University logoPeking UniversityTexas A&M University logoTexas A&M UniversityUniversity of British Columbia logoUniversity of British ColumbiaNorthwestern University logoNorthwestern UniversityNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterLouisiana State UniversityUniversity of Florida logoUniversity of FloridaINFN Sezione di PisaRutherford Appleton LaboratoryUniversity of Minnesota logoUniversity of MinnesotaUniversity of Maryland logoUniversity of MarylandUniversity of Tokyo logoUniversity of TokyoIndian Institute of ScienceNational Taiwan Normal UniversityThe Pennsylvania State University logoThe Pennsylvania State UniversityRochester Institute of TechnologyGran Sasso Science InstituteSorbonne Université logoSorbonne UniversitéUniversity of Massachusetts AmherstAustralian National University logoAustralian National UniversityUniversity of AucklandCardiff UniversityUniversity of GlasgowLeibniz Universität HannoverUniversity of PortsmouthUniversidade Federal do ABCHigh Energy Accelerator Research Organization (KEK)Indian Institute of Technology MadrasUniversity of StrathclydeUniversità di GenovaUniversity of Alabama in HuntsvilleSyracuse UniversityUniversity of SannioRMIT UniversityInstituto Nacional de Pesquisas EspaciaisUniversità di CamerinoUniversitat de les Illes BalearsMaastricht UniversityUniversity of BirminghamUniversità di TriesteNational Cheng Kung UniversityAix Marseille UniversityKyushu UniversityUniversity of South CarolinaWashington State UniversityUniversity of OregonNational Tsing-Hua UniversityKindai UniversityThe University of Western AustraliaUniversidade de AveiroEötvös Loránd UniversityUniversitat Autònoma de BarcelonaSofia UniversityNicolaus Copernicus Astronomical CenterInstituto de Fisica Teorica UAM/CSICShanghai Astronomical ObservatoryNicolaus Copernicus UniversityINFN, Laboratori Nazionali di FrascatiUniversity of Western OntarioUniversità di Napoli Federico IIUniversity of California, Santa Cruz logoUniversity of California, Santa CruzEmbry-Riddle Aeronautical UniversityUniversity of Hawai’iUniversity of Electro-CommunicationsNational Chung Hsing UniversityMontana State UniversityInternational Centre for Theoretical SciencesINFN Sezione di PerugiaIstituto Nazionale di Alta MatematicaThe University of SheffieldUniversité de la Côte d’AzurPhysikalisch-Technische BundesanstaltInstitut de Física d’Altes Energies (IFAE)INFN - Sezione di PadovaUniversity of the Balearic IslandsLaboratoire Kastler BrosselUniversità di FirenzeUniversity of ToyamaIstituto Nazionale di OtticaINFN-Sezione di GenovaUniversiteit AntwerpenThe University of MississippiUniversity of SzegedUniversità di PerugiaINFN-Sezione di BolognaUniversità di CagliariVU AmsterdamInstitute for Cosmic Ray Research, University of TokyoINFN Sezione di Roma Tor VergataUniversité de Paris, CNRS, Astroparticule et Cosmologie,California State University, Los AngelesUniversità di SienaLIGO Livingston ObservatoryNational Center for High-Performance ComputingNCBJLaboratoire AstroParticule et Cosmologie - CNRSUniversità di Urbino Carlo BoUniversità degli Studi di SassariUniversità di Trento, INFN-TIFPAWigner RCP, RMKIINFN Sezione di CagliariRESCEU, University of TokyoUniv Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1Universite de Nice, ARTEMIS, CNRS, Observatoire de la Cote d’AzurIstituto de Fısica Teórica, UAM/CSICAlbert-Einstein-Institut, HanoverAPC, AstroParticule et Cosmologie, CNRSGSSI, INFN, Laboratori Nazionali del Gran SassoNational Institute of Technology, Akashi CollegeLAPP, Universit´e Savoie Mont BlancUniversità di NapoliUniversità degli Studi di CamerinoThe University of Sheffield, Department of Physics and AstronomyUniversite de Paris* National and Kapodistrian University of AthensFriedrich-Schiller-Universität JenaUniversit Grenoble AlpesUniversit degli Studi di GenovaUniversit Libre de BruxellesUniversit di TrentoUniversit di SalernoUniversit degli Studi di PadovaUniversit de BordeauxUniversit di Roma La SapienzaUniversit Paris CitUniversit de StrasbourgUniversit de LyonUniversit di PisaINAF Osservatorio Astronomico di PadovaUniversit de MontpellierUniversit di Roma Tor VergataUniversit Di BolognaINAF ` Osservatorio Astronomico di TriesteINFN Sezione di Firenze
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates 103yr1\leq 10^{-3}\, {\rm yr}^{-1}. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115_042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90% credibility, to mg2.42×1023eV/c2m_g \leq 2.42 \times 10^{-23} \mathrm{eV}/c^2. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR.
University of Toronto logoUniversity of TorontoCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Pittsburgh logoUniversity of PittsburghUniversity of OsloChinese Academy of Sciences logoChinese Academy of SciencesUniversity of Southern California logoUniversity of Southern CaliforniaUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of California, Irvine logoUniversity of California, IrvineUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghETH Zürich logoETH ZürichUniversity of British Columbia logoUniversity of British ColumbiaRutherford Appleton LaboratoryUniversity of Maryland logoUniversity of MarylandUniversité Paris-Saclay logoUniversité Paris-SaclayStockholm University logoStockholm UniversityUniversity of HelsinkiInstituto de Física Teórica UAM-CSICTechnical University of Munich logoTechnical University of MunichCEA logoCEAUniversity of GenevaUniversity of PortsmouthConsejo Superior de Investigaciones CientíficasUniversità di GenovaUniversiteit LeidenUniversity of SussexUniversité Côte d’AzurINAFUniversity of CaliforniaJet Propulsion LaboratoryInstituto de Astrofísica de CanariasUniversity of NottinghamEuropean Space AgencySISSAUniversidad de CantabriaUniversity of Hawai’iUniversity of KwaZulu-NatalLudwig-Maximilians-UniversitätNational Observatory of AthensLaboratoire d’Astrophysique de MarseilleUniversidad de AtacamaMax-Planck Institut für extraterrestrische PhysikInstitut d’Estudis Espacials de CatalunyaINAF–Osservatorio Astronomico di PadovaUniversité Claude Bernard LyonDeutsches Elektronen SynchrotronInstitut de Physique des 2 Infinis de LyonINAF-IASF MilanoUniversità di FirenzeUniversity of RomeTuorla ObservatoryINAF-Osservatorio Astronomico di BolognaUniversità degli Studi di Roma TreIstituto Nazionale di Fisica Nucleare, Sezione di PadovaInstitute for Advanced Study, Technische Universität MünchenInstituto de Astrofísica e Ciências do Espaço, Universidade de LisboaUniversité Paris-Saclay, CNRS, CEAINAF - Osservatorio Astronomico di TorinoIstituto Nazionale di Fisica Nucleare, Sezione di Roma TreUniversité Paris-Saclay, CNRS, Institut d'astrophysique spatialeUniversité Paris-Saclay, CNRSIstituto Nazionale di Fisica Nucleare, Sezione di NapoliUniversité de Paris, CNRSSpace Science Data Center - Italian Space AgencyINAF-Osservatorio Astronomico di Bologna, Sezione di BolognaINAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Sezione di BolognaUniversity of Sussex, Astronomy CentreUniversité Paris-Saclay, CNRS, Université Paris CitéUniversità di BonnUniversità di Trieste, Sezione di TriesteUniversité de Genève, Observatoire de GenèveIstituto Nazionale di Astrofisica, Sezione di BolognaUniversit Grenoble AlpesUniversit del SalentoUniversit di FerraraINAF Osservatorio Astronomico di CapodimonteUniversit de LorraineAix-Marseille Universit",Universit de StrasbourgUniversit di PisaUniversit di PadovaUniversit degli Studi di MilanoUniversit de MontpellierUniversit degli Studi di Napoli Federico IIUniversit di Roma Tor VergataINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaUniversit Di BolognaUniversit degli Studi di Trieste
The ESA Euclid mission will measure the photometric redshifts of billions of galaxies in order to provide an accurate 3D view of the Universe at optical and near-infrared wavelengths. Photometric redshifts are determined by the PHZ processing function on the basis of the multi-wavelength photometry of Euclid and ground-based observations. In this paper, we describe the PHZ processing used for the Euclid Quick Data Release, the output products, and their validation. The PHZ pipeline is responsible for the following main tasks: source classification into star, galaxy, and QSO classes based on photometric colours; determination of photometric redshifts and of physical properties of galaxies. The classification is able to provide a star sample with a high level of purity, a highly complete galaxy sample, and reliable probabilities of belonging to those classes. The identification of QSOs is more problematic: photometric information seems to be insufficient to accurately separate QSOs from galaxies. The performance of the pipeline in the determination of photometric redshifts has been tested using the COSMOS2020 catalogue and a large sample of spectroscopic redshifts. The results are in line with expectations: the precision of the estimates are compatible with Euclid requirements, while, as expected, a bias correction is needed to achieve the accuracy level required for the cosmological probes. Finally, the pipeline provides reliable estimates of the physical properties of galaxies, in good agreement with findings from the COSMOS2020 catalogue, except for an unrealistically large fraction of very young galaxies with very high specific star-formation rates. The application of appropriate priors is, however, sufficient to obtain reliable physical properties for those problematic objects. We present several areas for improvement for future Euclid data releases.
CNRS logoCNRSUniversity of Amsterdam logoUniversity of AmsterdamCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of Cambridge logoUniversity of CambridgeHeidelberg UniversityINFN Sezione di NapoliUniversity of Waterloo logoUniversity of WaterlooImperial College London logoImperial College LondonUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of California, Irvine logoUniversity of California, IrvineScuola Normale SuperioreUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghCSICNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterUniversidade de LisboaLancaster UniversityEPFL logoEPFLUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsUniversity of HelsinkiSorbonne Université logoSorbonne UniversitéLeiden University logoLeiden UniversityCEA logoCEAUniversity of GenevaUniversity of PortsmouthLudwig-Maximilians-Universität MünchenUniversidad Complutense de MadridUniversität BonnUniversità di GenovaObservatoire de ParisThe University of British ColumbiaTechnical University of DenmarkINAF - Osservatorio Astrofisico di TorinoUniversité Côte d’AzurDurham University logoDurham UniversityUniversity of Groningen logoUniversity of GroningenInstituto de Astrofísica e Ciências do EspaçoJet Propulsion LaboratoryInstituto de Astrofísica de CanariasUniversity of NottinghamÉcole Polytechnique Fédérale de LausanneUniversitat Autònoma de BarcelonaSISSACNESINFN, Sezione di TorinoKarlsruhe Institute of Technology (KIT)Universidad de ValparaísoUniversidad Pablo de OlavideCanadian Institute for Advanced ResearchCentro de Astrobiología (CAB)Laboratoire LagrangeUniversity of São PauloObservatoire de la Côte d’AzurUniversity of Hawai’iINTAINAF – Istituto di Astrofisica e Planetologia SpazialiUniversity of the Western CapeMax Planck Institute for AstronomyThe Barcelona Institute of Science and TechnologyUniversity of PortoINAF – Osservatorio Astronomico di RomaInstitut de Física d’Altes Energies (IFAE)INFN - Sezione di PadovaInstituto de Astrofísica de Andalucía (IAA)Institut de Physique des 2 Infinis de LyonINAF-IASF MilanoInstitute of Space ScienceInstitut d’Astrophysique SpatialeINFN-Sezione di GenovaEuropean Space Agency (ESA)INFN-Sezione di BolognaINFN Sezione di RomaUniversidad Politécnica de CartagenaLAM (Laboratoire d’Astrophysique de Marseille)INFN Sezione di Roma 2ASI - Agenzia Spaziale ItalianaUniversità del SannioInfrared Processing and Analysis CenterUniversità Federico II di NapoliInternational Centre for Radio Astronomy Research, University of Western AustraliaLaboratoire Astroparticule et Cosmologie (APC)Institute of Space Sciences (ICE)ESACObservatoire de SauvernyPort d'Informació Científica (PIC)Institut de Ciències de l’Espai (ICE)Universit di CataniaINFN-Sezione di FerraraMuseo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi (CREF)Cosmic Dawn Center(DAWN)Universit degli Studi di PerugiaUniversit Claude Bernard Lyon 1Universit del SalentoAix-Marseille Universit",Universit Paris CitMax Planck-Institute for Extraterrestrial PhysicsSapienza Universit di RomaUniversit di PadovaUniversit degli Studi di TorinoUniversit di Roma Tor VergataINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaUniversit Di BolognaIFPU Institute for fundamental physics of the UniverseINAF ` Osservatorio Astronomico di TriesteINAF Osservatorio Astronomico di Brera
As the statistical precision of cosmological measurements increases, the accuracy of the theoretical description of these measurements needs to increase correspondingly in order to infer the underlying cosmology that governs the Universe. To this end, we have created the Cosmology Likelihood for Observables in Euclid (CLOE), which is a novel cosmological parameter inference pipeline developed within the Euclid Consortium to translate measurements and covariances into cosmological parameter constraints. In this first in a series of six papers, we describe the theoretical recipe of this code for the Euclid primary probes. These probes are composed of the photometric 3x2pt observables of cosmic shear, galaxy-galaxy lensing, and galaxy clustering, along with spectroscopic galaxy clustering. We provide this description in both Fourier and configuration space for standard and extended summary statistics, including the wide range of systematic uncertainties that affect them. This includes systematic uncertainties such as intrinsic galaxy alignments, baryonic feedback, photometric and spectroscopic redshift uncertainties, shear calibration uncertainties, sample impurities, photometric and spectroscopic galaxy biases, as well as magnification bias. The theoretical descriptions are further able to accommodate both Gaussian and non-Gaussian likelihoods and extended cosmologies with non-zero curvature, massive neutrinos, evolving dark energy, and simple forms of modified gravity. These theoretical descriptions that underpin CLOE will form a crucial component in revealing the true nature of the Universe with next-generation cosmological surveys such as Euclid.
29 Sep 2025
In this paper we present the construction of the equilibrium states at positive temperature in the presence of a condensation phase for a Gas of non relativistic Bose particles on an infinite space interacting through a localised two body interaction. We use methods of quantum field theory in the algebraic formulation to obtain this result and in order to prove convergence of the partition function and of the generating function of the correlation functions, we introduce an auxiliary stochastic Gaussian field which mediates the interaction of the Bose particles (Hubbard-Stratonovich transformation). The construction of the equilibrium state and of the partition function in the presence of the condensate, treating the auxiliary stochastic field as external potential, can be achieved using and adapting ideas and methods of Araki. Explicit formulas for the relative entropy of the equilibrium state with the external potential with respect to the equilibrium state of the free theory are obtained adapting known Feynman-Kac formulas for the propagators of the theory. If the two-body interaction is sufficiently weak, the proof of the convergence of the partition function after evaluation of the external stochastic field on a suitable Gaussian state can be given utilizing the properties of the relative entropy mentioned above. Limits where the localisation of the two-body interaction is removed are eventually discussed in combination of the limits of vanishing temperature and or in the weakly interacting regime.
CNRS logoCNRSCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloINFN Sezione di NapoliUniversity of Waterloo logoUniversity of WaterlooSLAC National Accelerator LaboratoryUniversity of UtahUniversity College London logoUniversity College Londonthe University of Tokyo logothe University of TokyoStanford University logoStanford UniversityUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghCSICNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterLancaster UniversityCollège de FranceUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsLawrence Berkeley National Laboratory logoLawrence Berkeley National LaboratoryUniversity of HelsinkiPerimeter Institute for Theoretical Physics logoPerimeter Institute for Theoretical PhysicsSorbonne Université logoSorbonne UniversitéLeiden University logoLeiden UniversityMacquarie UniversityCEA logoCEAUniversity of GenevaÉcole Polytechnique Fédérale de Lausanne (EPFL)University of ViennaLiverpool John Moores UniversityUniversity of PortsmouthAlma Mater Studiorum - Università di BolognaLudwig-Maximilians-Universität MünchenUniversität BonnUniversità di GenovaUniversidade do PortoTechnical University of DenmarkINAF - Osservatorio Astrofisico di TorinoUniversité Côte d’AzurDurham University logoDurham UniversityUniversity of Groningen logoUniversity of GroningenInstituto de Astrofísica e Ciências do EspaçoNiels Bohr InstituteJet Propulsion LaboratoryUniversity of LiègeInstituto de Astrofísica de CanariasUniversidad de ChileUniversity of NottinghamNational Research Council of CanadaCNESINFN, Sezione di TorinoUniversité de MonsUniversidad de La LagunaUniversidad de CantabriaELTE Eötvös Loránd UniversityUniversity of Hawai’iFaculdade de Ciências da Universidade de LisboaThe Open UniversityEuropean Space Astronomy Centre (ESAC)INAF – Istituto di Astrofisica e Planetologia SpazialiKapteyn Astronomical InstituteThe Barcelona Institute of Science and TechnologyRoyal ObservatoryINAF – Osservatorio Astronomico di RomaDonostia International Physics Center DIPCInstitut d'Astrophysique de ParisInstitut de Física d’Altes Energies (IFAE)Institut d’Estudis Espacials de Catalunya (IEEC)INFN - Sezione di PadovaInstituto de Astrofísica de Andalucía (IAA)SRON Netherlands Institute for Space ResearchIJCLabESA/ESTECINAF-IASF MilanoInstitute of Space ScienceInstitut d’Astrophysique SpatialeINFN-Sezione di GenovaLAMEuropean Space Agency (ESA)INFN-Sezione di BolognaKavli Institute for Particle Astrophysics and CosmologyHamburger SternwarteUniversidad Politécnica de CartagenaInstitució Catalana de Recerca i Estudis Avançats (ICREA)Millennium Institute of Astrophysics (MAS)CPPMCentre National d’Etudes SpatialesWaterloo Centre for AstrophysicsHerzberg Astronomy and AstrophysicsMullard Space Science LaboratoryIP2I LyonInstitut de Recherche en Astrophysique et Planétologie (IRAP)University of Applied Sciences and Arts of Southern Switzerland (SUPSI)OCAInstitute of Space Sciences (ICE)Universidad de ConcepciٞnKavli IPMU (WPI)Observatoire de SauvernyDanish Space Research InstituteDeutsches SOFIA InstitutGothard Astrophysical ObservatoryPort d'Informació Científica (PIC)LagrangeMTA-ELTE Extragalactic Astrophysics Research GroupNOVA, Dutch Research School for AstronomyIFCA, Instituto de Física de CantabriaUKRI-STFCINFN-Sezione di Roma TreINFN-Sezione di FerraraCosmic Dawn Center(DAWN)Universit Claude Bernard Lyon 1Universit di FerraraINAF Osservatorio Astronomico di CapodimonteMax Planck Institut fr AstronomieAix-Marseille Universit",Universit degli Studi di PadovaRWTH Aachen UniversityMax Planck-Institute for Extraterrestrial PhysicsCentre de Recherches Astrophysiques de LyonUniversit degli Studi di MilanoUniversit degli Studi di TorinoUniversit degli Studi di Napoli Federico IIINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaIFPU Institute for fundamental physics of the UniverseINFN Sezione di TriesteINAF ` Osservatorio Astronomico di TriesteUniversit degli Studi di TriesteINAF Osservatorio Astronomico di Brera
The Euclid Collaboration developed a strong lensing discovery engine combining machine learning, citizen science, and expert assessment, leading to the identification of 497 strong gravitational lens candidates from the Euclid Quick Data Release 1. This includes 243 previously unpublished high-confidence candidates and demonstrates a detection rate of 20.3 lens candidates per square degree, with a significant number having small Einstein radii below 1 arcsecond.
This paper presents a novel approach to enhance Model Predictive Control (MPC) for legged robots through Distributed Optimization. Our method focuses on decomposing the robot dynamics into smaller, parallelizable subsystems, and utilizing the Alternating Direction Method of Multipliers (ADMM) to ensure consensus among them. Each subsystem is managed by its own Optimal Control Problem, with ADMM facilitating consistency between their optimizations. This approach not only decreases the computational time but also allows for effective scaling with more complex robot configurations, facilitating the integration of additional subsystems such as articulated arms on a quadruped robot. We demonstrate, through numerical evaluations, the convergence of our approach on two systems with increasing complexity. In addition, we showcase that our approach converges towards the same solution when compared to a state-of-the-art centralized whole-body MPC implementation. Moreover, we quantitatively compare the computational efficiency of our method to the centralized approach, revealing up to a 75% reduction in computational time. Overall, our approach offers a promising avenue for accelerating MPC solutions for legged robots, paving the way for more effective utilization of the computational performance of modern hardware.
Two-sample hypothesis testing-determining whether two sets of data are drawn from the same distribution-is a fundamental problem in statistics and machine learning with broad scientific applications. In the context of nonparametric testing, maximum mean discrepancy (MMD) has gained popularity as a test statistic due to its flexibility and strong theoretical foundations. However, its use in large-scale scenarios is plagued by high computational costs. In this work, we use a Nyström approximation of the MMD to design a computationally efficient and practical testing algorithm while preserving statistical guarantees. Our main result is a finite-sample bound on the power of the proposed test for distributions that are sufficiently separated with respect to the MMD. The derived separation rate matches the known minimax optimal rate in this setting. We support our findings with a series of numerical experiments, emphasizing applicability to realistic scientific data.
ETH Zurich logoETH ZurichCNRS logoCNRSUniversity of Waterloo logoUniversity of WaterlooUniversity of Manchester logoUniversity of ManchesterUC Berkeley logoUC BerkeleyUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordUniversity of California, Irvine logoUniversity of California, IrvineUniversity of EdinburghCSICNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterUniversidade de LisboaLancaster UniversityUniversity of Florida logoUniversity of FloridaUniversidad de GranadaSpace Telescope Science Institute logoSpace Telescope Science InstituteEPFL logoEPFLUniversidad Autónoma de MadridUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsUniversity of HelsinkiPerimeter Institute for Theoretical Physics logoPerimeter Institute for Theoretical PhysicsAalto University logoAalto UniversityCEA logoCEAUniversity of GenevaUniversity of PortsmouthAlma Mater Studiorum - Università di BolognaUniversität BonnUniversità di GenovaUniversidade do PortoSpace Science InstituteUniversity of OuluTechnical University of DenmarkINAF - Osservatorio Astrofisico di TorinoUniversité Côte d’AzurDurham University logoDurham UniversityUniversity of Groningen logoUniversity of GroningenInstituto de Astrofísica e Ciências do EspaçoJagiellonian UniversityInstituto de Astrofísica de CanariasEuropean Space AgencySISSA — International School for Advanced StudiesINFN, Sezione di TorinoUniversidad de CantabriaINFN, Sezione di MilanoThe Open UniversityINAF – Istituto di Astrofisica e Planetologia SpazialiLaboratoire d’Astrophysique de MarseilleInstitut de Ciències de l’EspaiINAF – Osservatorio Astronomico di RomaInstitut d'Astrophysique de ParisUniversidad de SalamancaInstitut de Física d’Altes Energies (IFAE)Institut d’Estudis Espacials de Catalunya (IEEC)Institució Catalana de Recerca i Estudis AvançatsINFN - Sezione di PadovaInstitute for Astronomy, University of HawaiiUniversitá degli Studi dell’InsubriaLeibniz-Institut für Astrophysik Potsdam (AIP)INAF-IASF MilanoInstitute of Space ScienceCosmic Dawn CenterINFN-Sezione di GenovaINFN-Sezione di BolognaUniversidad Politécnica de CartagenaINAF–IASF MilanoCentre National d’Etudes SpatialesUniv Claude Bernard Lyon 1INAF–Osservatorio di Astrofisica e Scienza dello Spazio di BolognaESACPort d’Informació CientíficaARI HeidelbergSodankylä Geophysical ObservatoryDanish Centre for Particle Astrophysics (DCPA)Universit degli Studi di FerraraINAF Osservatorio Astronomico di CapodimonteMax Planck Institut fr AstronomieAix-Marseille Universit",Universit Paris CitMax Planck-Institute for Extraterrestrial PhysicsRuhr-University-BochumSapienza Universit di RomaUniversit di PadovaUniversit degli Studi di MilanoINAF Osservatorio Astronomico di PadovaUniversit degli Studi di TorinoUniversit degli Studi di Napoli Federico IIINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaUniversit Di BolognaIFPU Institute for fundamental physics of the UniverseINFN Sezione di TriesteINAF ` Osservatorio Astronomico di Trieste
We introduce SpectraPyle, a versatile spectral stacking pipeline developed for the Euclid mission's NISP spectroscopic surveys, aimed at extracting faint emission lines and spectral features from large galaxy samples in the Wide and Deep Surveys. Designed for computational efficiency and flexible configuration, SpectraPyle supports the processing of extensive datasets critical to Euclid's non-cosmological science goals. We validate the pipeline using simulated spectra processed to match Euclid's expected final data quality. Stacking enables robust recovery of key emission lines, including Halpha, Hbeta, [O III], and [N II], below individual detection limits. However, the measurement of galaxy properties such as star formation rate, dust attenuation, and gas-phase metallicity are biased at stellar mass below log10(M*/Msol) ~ 9 due to the flux-limited nature of Euclid spectroscopic samples, which cannot be overcome by stacking. The SFR-stellar mass relation of the parent sample is recovered reliably only in the Deep survey for log10(M*/Msol) > 10, whereas the metallicity-mass relation is recovered more accurately over a wider mass range. These limitations are caused by the increased fraction of redshift measurement errors at lower masses and fluxes. We examine the impact of residual redshift contaminants that arises from misidentified emission lines and noise spikes, on stacked spectra. Even after stringent quality selections, low-level contamination (< 6%) has minimal impact on line fluxes due to the systematically weaker emission of contaminants. Percentile-based analysis of stacked spectra provides a sensitive diagnostic for detecting contamination via coherent spurious features at characteristic wavelengths. While our simulations include most instrumental effects, real Euclid data will require further refinement of contamination mitigation strategies.
It has been observed that, given an algebraic quantum field theory (AQFT) on a manifold MM and an open cover {Mα}\{M_\alpha\} of MM, it is typically not possible to recover the global algebra of observables on MM by simply gluing the underlying local algebras subordinate to {Mα}\{M_\alpha\}. Instead of gluing local algebras, we introduce a gluing construction for AQFTs subordinate to {Mα}\{M_\alpha\} and we show that for simple examples of AQFTs, constructed out of geometric data, gluing the local AQFTs subordinate to {Mα}\{M_\alpha\} recovers the global AQFT on MM.
We make predictions and propose tests for the semi-leptonic decays BD()lνˉlB\to D^{(*)} l \bar{\nu}_l and ΛbΛclνˉl\Lambda_b\to \Lambda_c l \bar{\nu}_l, with ll = ee, μ\mu and τ\tau. Preliminarily, we study such processes according to the s\ell-s scheme, which helps interpreting the results of previous analyses. Then, we write the angular distributions of those decays in the helicity formalism and suggest for each decay some tests for distinguishing among the various Dirac operators which may explain the tensions with the standard model. In particular, we propose, for ll = ee and μ\mu, to study the fully differential distribution. In the cases of the BDB\to D^* and Λb\Lambda_b decays, important physical information can be extracted even after integrating over the momentum of the charged lepton, which is quite suitable for ll = τ\tau. Especially, the decay angular distribution of polarized Λb\Lambda_b depends on five observables, which assume different values according to the various new-physics interactions; one of these observables is related to the longitudinal polarization of the τνˉτ\tau-\bar{\nu}_\tau system, which can be compared with the DD^* longitudinal polarization in the BDB\to D^* decay. Moreover, we analyze the τ\tau anomaly in the branching ratios of the semi-leptonic decays; to this end, we make some assumptions, which have a remarkable predictive power and lead to results in agreement with previous theoretical calculations. Thanks to these assumptions, we combine our present analysis of the Λb\Lambda_b decay with the previous ones of the BD()B\to D^{(*)} decays, getting strong constraints on the parameters which characterize the different new-physics operators and an indication on the most likely one.
It has recently been argued that AI models' representations are becoming aligned as their scale and performance increase. Empirical analyses have been designed to support this idea and conjecture the possible alignment of different representations toward a shared statistical model of reality. In this paper, we propose a learning-theoretic perspective to representation alignment. First, we review and connect different notions of alignment based on metric, probabilistic, and spectral ideas. Then, we focus on stitching, a particular approach to understanding the interplay between different representations in the context of a task. Our main contribution here is relating properties of stitching to the kernel alignment of the underlying representation. Our results can be seen as a first step toward casting representation alignment as a learning-theoretic problem.
Non-robust (fragile) test execution is a commonly reported challenge in GUI-based test automation, despite much research and several proposed solutions. A test script needs to be resilient to (minor) changes in the tested application but, at the same time, fail when detecting potential issues that require investigation. Test script fragility is a multi-faceted problem, but one crucial challenge is reliably identifying and locating the correct target web elements when the website evolves between releases or otherwise fails and reports an issue. This paper proposes and evaluates a novel approach called similarity-based web element localization (Similo), which leverages information from multiple web element locator parameters to identify a target element using a weighted similarity score. The experimental study compares Similo to a baseline approach for web element localization. To get an extensive empirical basis, we target 40 of the most popular websites on the Internet in our evaluation. Robustness is considered by counting the number of web elements found in a recent website version compared to how many of these existed in an older version. Results of the experiment show that Similo outperforms the baseline representing the current state-of-the-art; it failed to locate the correct target web element in 72 out of 598 considered cases compared to 146 failed cases for the baseline approach. This study presents evidence that quantifying the similarity between multiple attributes of web elements when trying to locate them, as in our proposed Similo approach, is beneficial. With acceptable efficiency, Similo gives significantly higher effectiveness (i.e., robustness) than the baseline web element localization approach.
We consider heavy-heavy-light-light (HHLL) correlators in AdS/CFT, focussing on the D1D5 CFT2_2 and the N=4{\cal N}= 4 super Yang-Mills theory. Out of the lightest 1/21/2-BPS operator in the spectrum, OO, we construct a particular heavy operator OHO_H given by a coherent superposition of multi-particle operators OnO^n, and study the HHLL correlator. When nn is of order of the central charge, we show that the bulk equation that computes our boundary HHLL correlators is always a Heun equation. By assuming that the form of the correlator can be continued to the regime where nn is O(1){\mathcal O}(1), we first reproduce the known single-particle four-point correlators for n=1n=1 and then predict new results for the multi-particle correlators OnOnOO\langle O^n O^n O O\rangle. Explicit expressions can be written entirely in terms of nn-loop ladder integrals and their derivatives, and we provide them for n=2n=2 and n=3n=3 both in position and in Mellin space. Focussing on the AdS5_5 case, we study the OPE expansion of these multi-particle correlators and show that several consistency relations with known CFT data are non-trivially satisfied. Finally, we extract new CFT data for double and triple-particle long operators.
A solar active region can significantly disrupt the Sun Earth space environment, often leading to severe space weather events such as solar flares and coronal mass ejections. As a consequence, the automatic classification of active region groups is the crucial starting point for accurately and promptly predicting solar activity. This study presents our results concerned with the application of deep learning techniques to the classification of active region cutouts based on the Mount Wilson classification scheme. Specifically, we have explored the latest advancements in image classification architectures, from Convolutional Neural Networks to Vision Transformers, and reported on their performances for the active region classification task, showing that the crucial point for their effectiveness consists in a robust training process based on the latest advances in the field.
In this paper, we tackle the problem of estimating 3D contact forces using vision-based tactile sensors. In particular, our goal is to estimate contact forces over a large range (up to 15 N) on any objects while generalizing across different vision-based tactile sensors. Thus, we collected a dataset of over 200K indentations using a robotic arm that pressed various indenters onto a GelSight Mini sensor mounted on a force sensor and then used the data to train a multi-head transformer for force regression. Strong generalization is achieved via accurate data collection and multi-objective optimization that leverages depth contact images. Despite being trained only on primitive shapes and textures, the regressor achieves a mean absolute error of 4\% on a dataset of unseen real-world objects. We further evaluate our approach's generalization capability to other GelSight mini and DIGIT sensors, and propose a reproducible calibration procedure for adapting the pre-trained model to other vision-based sensors. Furthermore, the method was evaluated on real-world tasks, including weighing objects and controlling the deformation of delicate objects, which relies on accurate force feedback. Project webpage: this http URL
CNRS logoCNRSCalifornia Institute of Technology logoCalifornia Institute of TechnologyUniversity of OsloHeidelberg UniversityINFN Sezione di NapoliUniversity of Waterloo logoUniversity of WaterlooSLAC National Accelerator LaboratoryUniversity of Manchester logoUniversity of ManchesterUniversity of ZurichUniversity College London logoUniversity College LondonUniversity of California, Irvine logoUniversity of California, IrvineStanford University logoStanford UniversityUniversity of Copenhagen logoUniversity of CopenhagenUniversity of EdinburghPennsylvania State UniversityCSICNASA Goddard Space Flight Center logoNASA Goddard Space Flight CenterCONICETLancaster UniversitySouthern Methodist UniversityRadboud UniversityThe University of Texas at DallasUniversité Paris-Saclay logoUniversité Paris-SaclayHelsinki Institute of PhysicsUniversity of HelsinkiKing’s College London logoKing’s College LondonUniversité de GenèveSorbonne Université logoSorbonne UniversitéUniversity of TurkuPrinceton University logoPrinceton UniversityÉcole Polytechnique Fédérale de Lausanne (EPFL)Liverpool John Moores UniversityUniversity of PortsmouthAlma Mater Studiorum - Università di BolognaINAF-IAPSLudwig-Maximilians-Universität MünchenUniversität BonnFlatiron Institute logoFlatiron InstituteUniversità di GenovaUniversité de NeuchâtelUniversidade do PortoUniversity of SussexUniversity of OuluObservatoire de ParisTechnical University of DenmarkDurham University logoDurham UniversityInstituto de Astrofísica e Ciências do EspaçoNiels Bohr InstituteJet Propulsion LaboratoryInstituto de Astrofísica de CanariasRuhr-Universität BochumSISSACNESUniversità di ParmaUniversidad de La LagunaUniversidad de CantabriaINFN, Laboratori Nazionali di FrascatiConsejo Superior de Investigaciones Científicas (CSIC)University of Hawai’iINFN, Sezione di MilanoFaculdade de Ciências da Universidade de LisboaUniversität BielefeldASI Space Science Data CenterObservatoire astronomique de StrasbourgThe Barcelona Institute of Science and TechnologyCEA SaclayCNRS/IN2P3INAF - Osservatorio di Astrofisica e Scienza dello SpazioInstituto de Astrofísica de Andalucía, IAA-CSICINAF – Osservatorio Astronomico di RomaGrenoble-INPInstitut d'Astrophysique de ParisUniversidad de SalamancaInstitut de Física d’Altes Energies (IFAE)Institut d’Estudis Espacials de Catalunya (IEEC)Univ Grenoble AlpesINFN - Sezione di PadovaIPAGINAF-IASF MilanoUniversidad de MurciaInstitute of Space ScienceINFN-Sezione di GenovaDTU SpaceEuropean Space Agency (ESA)INFN-Sezione di BolognaKavli Institute for Particle Astrophysics and CosmologyUNLPUniversità degli Studi di Roma La SapienzaLAM (Laboratoire d’Astrophysique de Marseille)Astroparticule et CosmologieAIMCPPMASI - Agenzia Spaziale ItalianaLERMAInstituto de Física Teórica UAM/CSICMullard Space Science LaboratoryLaboratoire de Physique Subatomique et de CosmologieCSIC-Universidad de CantabriaESTECInstitute for Gravitation and the CosmosUAMAurora TechnologyINSUINAF - Osservatorio Astronomico di TorinoUniversidad de ConcepciٞnESACCenter for Computational AstrophysicsLaboratoire de Physique Théorique et Hautes EnergiesInstitut de Physique des 2 Infinis de Lyon (IP2I)Port d’Informació CientíficaInstituto Argentino de Radioastronomía (IAR)LPSC-Université Grenoble AlpesC.A.U.P.ESRINDanish National Space CentreIFCA, Instituto de Física de CantabriaUniversit PSLINFN-Sezione di FerraraCosmic Dawn Center(DAWN)Institute of Space Sciences (ICE–CSIC)INFN National Institute for Nuclear PhysicsUniversit Claude Bernard Lyon 1INAF Osservatorio Astronomico di CapodimonteMax Planck Institut fr AstronomieAix-Marseille Universit",Universit Paris CitInstitut de Physique Nucléaire de Lyon (IPNL)DRF/IRFUDEDIPINFN – Sezione di FirenzeSerco FinlandUniversit de StrasbourgMax Planck-Institute for Extraterrestrial PhysicsUniversit de LyonSapienza Universit di RomaUniversit di PadovaINAF Osservatorio Astrofisico di ArcetriUniversit degli Studi di MilanoUniversit degli Studi di FirenzeUniversit degli Studi di Napoli Federico IIINAF Osservatorio di Astrofisica e Scienza dello Spazio di BolognaUniversit Di BolognaIFPU Institute for fundamental physics of the UniverseINAF ` Osservatorio Astronomico di TriesteUniversit degli Studi di TriesteINAF Osservatorio Astronomico di Brera
We compare the performance of the flat-sky approximation and Limber approximation for the clustering analysis of the photometric galaxy catalogue of Euclid. We study a 6 bin configuration representing the first data release (DR1) and a 13 bin configuration representative of the third and final data release (DR3). We find that the Limber approximation is sufficiently accurate for the analysis of the wide bins of DR1. Contrarily, the 13 bins of DR3 cannot be modelled accurately with the Limber approximation. Instead, the flat-sky approximation is accurate to below 5%5\% in recovering the angular power spectra of galaxy number counts in both cases and can be used to simplify the computation of the full power spectrum in harmonic space for the data analysis of DR3.
There are no more papers matching your filters at the moment.