Umea University
We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
Objective: While recent advances in text-conditioned generative models have enabled the synthesis of realistic medical images, progress has been largely confined to 2D modalities such as chest X-rays. Extending text-to-image generation to volumetric CT remains a significant challenge, due to its high dimensionality, anatomical complexity, and the absence of robust frameworks that align vision-language data in 3D medical imaging. Methods: We introduce a novel architecture for Text-to-CT generation that combines a latent diffusion model with a 3D contrastive vision-language pretraining scheme. Our approach leverages a dual-encoder CLIP-style model trained on paired CT volumes and radiology reports to establish a shared embedding space, which serves as the conditioning input for generation. CT volumes are compressed into a low-dimensional latent space via a pretrained volumetric VAE, enabling efficient 3D denoising diffusion without requiring external super-resolution stages. Results: We evaluate our method on the CT-RATE dataset and conduct a comprehensive assessment of image fidelity, clinical relevance, and semantic alignment. Our model achieves competitive performance across all tasks, significantly outperforming prior baselines for text-to-CT generation. Moreover, we demonstrate that CT scans synthesized by our framework can effectively augment real data, improving downstream diagnostic performance. Conclusion: Our results show that modality-specific vision-language alignment is a key component for high-quality 3D medical image generation. By integrating contrastive pretraining and volumetric diffusion, our method offers a scalable and controllable solution for synthesizing clinically meaningful CT volumes from text, paving the way for new applications in data augmentation, medical education, and automated clinical simulation. Code at this https URL.
· +1
Pretrained language models are an integral part of AI applications, but their high computational cost for training limits accessibility. Initiatives such as Bloom and StarCoder aim to democratize access to pretrained models for collaborative community development. Despite these efforts, such models encounter challenges such as limited multilingual capabilities, risks of catastrophic forgetting during continual pretraining, and the high costs of training models from scratch, alongside the need to align with AI safety standards and regulatory frameworks. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435B additional tokens, Aurora-M surpasses 2T tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. We evaluate Aurora-M across a wide range of tasks and languages, showcasing its robustness against catastrophic forgetting and its superior performance in multilingual settings, particularly in safety evaluations. We open-source Aurora-M and its variants to encourage responsible open-source development of large language models at this https URL
In this work, we propose and analyze DCA-PAGE, a novel algorithm that integrates the difference-of-convex algorithm (DCA) with the ProbAbilistic Gradient Estimator (PAGE) to solve structured nonsmooth difference-of-convex programs. In the finite-sum setting, our method achieves a gradient computation complexity of O(N+N1/2ε2)O(N + N^{1/2}\varepsilon^{-2}) with sample size NN, surpassing the previous best-known complexity of O(N+N2/3ε2)O(N + N^{2/3}\varepsilon^{-2}) for stochastic variance-reduced (SVR) DCA methods. Furthermore, DCA-PAGE readily extends to online settings with a similar optimal gradient computation complexity O(b+b1/2ε2)O(b + b^{1/2}\varepsilon^{-2}) with batch size bb, a significant advantage over existing SVR DCA approaches that only work for the finite-sum setting. We further refine our analysis with a gap function, which enables us to obtain comparable convergence guarantees under milder assumptions.
Image-to-image translation has emerged as a powerful technique in medical imaging, enabling tasks such as image denoising and cross-modality conversion. However, it suffers from limitations in handling out-of-distribution samples without causing performance degradation. To address this limitation, we propose a novel Test-Time Adaptation (TTA) framework that dynamically adjusts the translation process based on the characteristics of each test sample. Our method introduces a Reconstruction Module to quantify the domain shift and a Dynamic Adaptation Block that selectively modifies the internal features of a pretrained translation model to mitigate the shift without compromising the performance on in-distribution samples that do not require adaptation. We evaluate our approach on two medical image-to-image translation tasks: low-dose CT denoising and T1 to T2 MRI translation, showing consistent improvements over both the baseline translation model without TTA and prior TTA methods. Our analysis highlights the limitations of the state-of-the-art that uniformly apply the adaptation to both out-of-distribution and in-distribution samples, demonstrating that dynamic, sample-specific adjustment offers a promising path to improve model resilience in real-world scenarios. The code is available at: this https URL.
Quantum systems have started to emerge as a disruptive technology and enabling platforms - exploiting the principles of quantum mechanics via programmable quantum bits (QuBits) - to achieve quantum supremacy in computing. Academic research, industrial projects (e.g., Amazon Braket, IBM Qiskit), and consortiums like 'Quantum Flagship' are striving to develop practically capable and commercially viable quantum computing (QC) systems and technologies. Quantum Computing as a Service (QCaaS) is viewed as a solution attuned to the philosophy of service-orientation that can offer QC resources and platforms, as utility computing, to individuals and organisations who do not own quantum computers. This research investigates a process-centric and architecture-driven approach to offer a software engineering perspective on enabling QCaaS - a.k.a quantum service-orientation. We employed a two-phase research method comprising (a) a systematic mapping study and (b) an architecture-based development, first to identify the phases of the quantum service development life cycle and subsequently to integrate these phases into a reference architecture that supports QCaaS. The SMS process retrieved a collection of potentially relevant research literature and based on a multi-step selection and qualitative assessment, we selected 41 peer-reviewed studies to answer three RQs. The RQs investigate (i) demographic details in terms of frequency, types, and trends of research, (ii) phases of quantum service development lifecycle to derive a reference architecture for conception, modeling, assembly, and deployment of services, and (iii) The results identify a 4-phased development lifecycle along with quantum significant requirements (QSRs), various modeling notations, catalogue of patterns, programming languages, and deployment platforms that can be integrated in a layered reference architecture to engineer QCaaS.
Studies of memory trajectories using longitudinal data often result in highly non-representative samples due to selective study enrollment and attrition. An additional bias comes from practice effects that result in improved or maintained performance due to familiarity with test content or context. These challenges may bias study findings and severely distort the ability to generalize to the target population. In this study we propose an approach for estimating the finite population mean of a longitudinal outcome conditioning on being alive at a specific time point. We develop a flexible Bayesian semi-parametric predictive estimator for population inference when longitudinal auxiliary information is known for the target population. We evaluate sensitivity of the results to untestable assumptions and further compare our approach to other methods used for population inference in a simulation study. The proposed approach is motivated by 15-year longitudinal data from the Betula longitudinal cohort study. We apply our approach to estimate lifespan trajectories in episodic memory, with the aim to generalize findings to a target population.
This paper reports on the ReINTEL Shared Task for Responsible Information Identification on social network sites, which is hosted at the seventh annual workshop on Vietnamese Language and Speech Processing (VLSP 2020). Given a piece of news with respective textual, visual content and metadata, participants are required to classify whether the news is `reliable' or `unreliable'. In order to generate a fair benchmark, we introduce a novel human-annotated dataset of over 10,000 news collected from a social network in Vietnam. All models will be evaluated in terms of AUC-ROC score, a typical evaluation metric for classification. The competition was run on the Codalab platform. Within two months, the challenge has attracted over 60 participants and recorded nearly 1,000 submission entries.
This paper presents the development of a calibrated digital twin of a wheel loader. A calibrated digital twin integrates a construction vehicle with a high-fidelity digital model allowing for automated diagnostics and optimization of operations as well as pre-planning simulations enhancing automation capabilities. The high-fidelity digital model is a virtual twin of the physical wheel loader. It uses a physics-based multibody dynamic model of the wheel loader in the software AGX Dynamics. Interactions of the wheel loader's bucket while in use in construction can be simulated in the virtual model. Calibration makes this simulation of high-fidelity which can enhance realistic planning for automation of construction operations. In this work, a wheel loader was instrumented with several sensors used to calibrate the digital model. The calibrated digital twin was able to estimate the magnitude of the forces on the bucket base with high accuracy, providing a high-fidelity simulation.
Robotic manipulation in dynamic and unstructured environments requires safety mechanisms that exploit what is known and what is uncertain about the world. Existing safety filters often assume full observability, limiting their applicability in real-world tasks. We propose a physics-based safety filtering scheme that leverages high-fidelity simulation to assess control policies under uncertainty in world parameters. The method combines dense rollout with nominal parameters and parallelizable sparse re-evaluation at critical state-transitions, quantified through generalized factors of safety for stable grasping and actuator limits, and targeted uncertainty reduction through probing actions. We demonstrate the approach in a simulated bimanual manipulation task with uncertain object mass and friction, showing that unsafe trajectories can be identified and filtered efficiently. Our results highlight physics-based sparse safety evaluation as a scalable strategy for safe robotic manipulation under uncertainty.
A well-known first-order method for sampling from log-concave probability distributions is the Unadjusted Langevin Algorithm (ULA). This work proposes a new annealing step-size schedule for ULA, which allows to prove new convergence guarantees for sampling from a smooth log-concave distribution, which are not covered by existing state-of-the-art convergence guarantees. To establish this result, we derive a new theoretical bound that relates the Wasserstein distance to total variation distance between any two log-concave distributions that complements the reach of Talagrand T2 inequality. Moreover, applying this new step size schedule to an existing constrained sampling algorithm, we show state-of-the-art convergence rates for sampling from a constrained log-concave distribution, as well as improved dimension dependence.
Artificial Intelligence (AI)-based models can help in diagnosing COVID-19 from lung CT scans and X-ray images; however, these models require large amounts of data for training and validation. Many researchers studied Generative Adversarial Networks (GANs) for producing synthetic lung CT scans and X-Ray images to improve the performance of AI-based models. It is not well explored how good GAN-based methods performed to generate reliable synthetic data. This work analyzes 43 published studies that reported GANs for synthetic data generation. Many of these studies suffered data bias, lack of reproducibility, and lack of feedback from the radiologists or other domain experts. A common issue in these studies is the unavailability of the source code, hindering reproducibility. The included studies reported rescaling of the input images to train the existing GANs architecture without providing clinical insights on how the rescaling was motivated. Finally, even though GAN-based methods have the potential for data augmentation and improving the training of AI-based models, these methods fall short in terms of their use in clinical practice. This paper highlights research hotspots in countering the data scarcity problem, identifies various issues as well as potentials, and provides recommendations to guide future research. These recommendations might be useful to improve acceptability for the GAN-based approaches for data augmentation as GANs for data augmentation are increasingly becoming popular in the AI and medical imaging research community.
Linear networks provide valuable insights into the workings of neural networks in general. This paper identifies conditions under which the gradient flow provably trains a linear network, in spite of the non-strict saddle points present in the optimization landscape. This paper also provides the computational complexity of training linear networks with gradient flow. To achieve these results, this work develops a machinery to provably identify the stable set of gradient flow, which then enables us to improve over the state of the art in the literature of linear networks (Bah et al., 2019;Arora et al., 2018a). Crucially, our results appear to be the first to break away from the lazy training regime which has dominated the literature of neural networks. This work requires the network to have a layer with one neuron, which subsumes the networks with a scalar output, but extending the results of this theoretical work to all linear networks remains a challenging open problem.
Chromosome capture techniques like Hi-C have expanded our understanding of mammalian genome 3D architecture and how it influences gene activity. To analyze Hi-C data sets, researchers increasingly treat them as DNA-contact networks and use standard community detection techniques to identify mesoscale 3D communities. However, there are considerable challenges in finding significant communities because the Hi-C networks have cross-scale interactions and are almost fully connected. This paper presents a pipeline to distil 3D communities that remain intact under experimental noise. To this end, we bootstrap an ensemble of Hi-C datasets representing noisy data and extract 3D communities that we compare with the unperturbed dataset. Notably, we extract the communities by maximizing local modularity (using the Generalized Louvain method), which considers the multifractal spectrum recently discovered in Hi-C maps. Our pipeline finds that stable communities (under noise) typically have above-average internal contact frequencies and tend to be enriched in active chromatin marks. We also find they fold into more nested cross-scale hierarchies than less stable ones. Apart from presenting how to systematically extract robust communities in Hi-C data, our paper offers new ways to generate null models that take advantage of the network's multifractal properties. We anticipate this has a broad applicability to several network applications.
When creating (open) agent systems it has become common practice to use social concepts such as social practices, norms and conventions to model the way the interactions between the agents are regulated. However, in the literature most papers concentrate on only one of these aspects at the time. Therefore there is hardly any research on how these social concepts relate and when each of them emerges or evolves from another concept. In this paper we will investigate some of the relations between these concepts and also whether they are fundamentally stemming from a single social object or should be seen as different types of objects altogether.
We have studied the linear dispersion relation for Langmuir waves in plasmas of very high density, based on the Dirac-Heisenberg-Wigner formalism. The vacuum contribution to the physical observables leads to ultra-violet divergences, that are removed by a charge renormalization. The remaining vacuum contribution is small, and is in agreement with previously derived expressions for the time-dependent vacuum polarization. The main new feature of the theory is a damping mechanism similar to Landau damping, but where the plasmon energy give rise to creation of electron-positron pairs. The dependence of the damping rate (pair-creation rate) on wave-number, temperature, and density is analyzed. Finally, the analytical results of linearized theory are compared.
Deep learning has been used extensively for medical image analysis applications, assuming the training and test data adhere to the same probability distributions. However, a common challenge arises when dealing with medical images generated by different systems or even the same system with varying parameter settings. Such images often contain diverse textures and noise patterns, violating the assumption. Consequently, models trained on data from one machine or setting usually struggle to perform effectively on data from another. To address this issue in ultrasound images, we proposed a Generative Adversarial Network (GAN) based model in this paper. We formulated image harmonization and denoising tasks as an image-to-image translation task, wherein we modified the texture pattern and reduced noise in Carotid ultrasound images while keeping the image content (the anatomy) unchanged. The performance was evaluated using feature distribution and pixel-space similarity metrics. In addition, blood-to-tissue contrast and influence on computed risk markers (Gray scale median, GSM) were evaluated. The results showed that domain adaptation was achieved in both tasks (histogram correlation 0.920 and 0.844), as compared to no adaptation (0.890 and 0.707), and that the anatomy of the images was retained (structure similarity index measure of the arterial wall 0.71 and 0.80). In addition, the image noise level (contrast) did not change in the image harmonization task (-34.1 vs 35.2 dB) but was improved in the noise reduction task (-23.5 vs -46.7 dB). The model outperformed the CycleGAN in both tasks. Finally, the risk marker GSM increased by 7.6 (p<0.001) in task 1 but not in task 2. We conclude that domain translation models are powerful tools for ultrasound image improvement while retaining the underlying anatomy but that downstream calculations of risk markers may be affected.
This paper introduces the three-branch Dual Attention-Guided Compact Bilinear CNN (DACB-Net) by focusing on learning from disease-specific regions to enhance accuracy and alignment. A global branch compensates for lost discriminative features, generating Attention Heat Maps (AHM) for relevant cropped regions. Finally, the last pooling layers of global and local branches are concatenated for fine-tuning, which offers a comprehensive solution to the challenges posed by skin disease diagnosis. Although current CNNs employ Stochastic Gradient Descent (SGD) for discriminative feature learning, using distinct pairs of local image patches to compute gradients and incorporating a modulation factor in the loss for focusing on complex data during training. However, this approach can lead to dataset imbalance, weight adjustments, and vulnerability to overfitting. The proposed solution combines two supervision branches and a novel loss function to address these issues, enhancing performance and interpretability. The framework integrates data augmentation, transfer learning, and fine-tuning to tackle data imbalance to improve classification performance, and reduce computational costs. Simulations on the HAM10000 and ISIC2019 datasets demonstrate the effectiveness of this approach, showcasing a 2.59% increase in accuracy compared to the state-of-the-art.
Forestry machines are heavy vehicles performing complex manipulation tasks in unstructured production forest environments. Together with the complex dynamics of the on-board hydraulically actuated cranes, the rough forest terrains have posed a particular challenge in forestry automation. In this study, the feasibility of applying reinforcement learning control to forestry crane manipulators is investigated in a simulated environment. Our results show that it is possible to learn successful actuator-space control policies for energy efficient log grasping by invoking a simple curriculum in a deep reinforcement learning setup. Given the pose of the selected logs, our best control policy reaches a grasping success rate of 97%. Including an energy-optimization goal in the reward function, the energy consumption is significantly reduced compared to control policies learned without incentive for energy optimization, while the increase in cycle time is marginal. The energy-optimization effects can be observed in the overall smoother motion and acceleration profiles during crane manipulation.
In this study, we proposed a model for skin disease classification using a Bilinear Convolutional Neural Network (BCNN) with a Constrained Triplet Network (CTN). BCNN can capture rich spatial interactions between features in image data. This computes the outer product of feature vectors from two different CNNs by a bilinear pooling. The resulting features encode second-order statistics, enabling the network to capture more complex relationships between different channels and spatial locations. The CTN employs the Triplet Loss Function (TLF) by using a new loss layer that is added at the end of the architecture called the Constrained Triplet Loss (CTL) layer. This is done to obtain two significant learning objectives: inter-class categorization and intra-class concentration with their deep features as often as possible, which can be effective for skin disease classification. The proposed model is trained to extract the intra-class features from a deep network and accordingly increases the distance between these features, improving the model's performance. The model achieved a mean accuracy of 93.72%.
There are no more papers matching your filters at the moment.