Accenture Labs
Researchers at MIT and Accenture Labs developed MatKG, the largest autonomously generated knowledge graph in materials science, encompassing over 2 million relationship triples among 80,000 entities. Built by extracting information from 4 million scientific publications using MatBERT and Knowledge Graph Embedding models, MatKG enables complex querying, resolves semantic ambiguities, and predicts novel material relationships, with 47% of predictions indicating direct relevance.
We study private prediction where differential privacy is achieved by adding noise to the outputs of a non-private model. Existing methods rely on noise proportional to the global sensitivity of the model, often resulting in sub-optimal privacy-utility trade-offs compared to private training. We introduce a novel approach for computing dataset-specific upper bounds on prediction sensitivity by leveraging convex relaxation and bound propagation techniques. By combining these bounds with the smooth sensitivity mechanism, we significantly improve the privacy analysis of private prediction compared to global sensitivity-based approaches. Experimental results across real-world datasets in medical image classification and natural language processing demonstrate that our sensitivity bounds are can be orders of magnitude tighter than global sensitivity. Our approach provides a strong basis for the development of novel privacy preserving technologies.
Researchers at University College Dublin and Accenture Labs introduced group counterfactual explanations and an algorithm for their generation, enabling AI systems to explain multiple similar predictions with a single, coherent explanation. A large user study demonstrated these group explanations improve user accuracy, confidence, satisfaction, and trust compared to individual counterfactuals, particularly when users are explicitly aware of the grouping.
Machine Unlearning (MU) is an increasingly important topic in machine learning safety, aiming at removing the contribution of a given data point from a training procedure. Federated Unlearning (FU) consists in extending MU to unlearn a given client's contribution from a federated training routine. While several FU methods have been proposed, we currently lack a general approach providing formal unlearning guarantees to the FedAvg routine, while ensuring scalability and generalization beyond the convex assumption on the clients' loss functions. We aim at filling this gap by proposing SIFU (Sequential Informed Federated Unlearning), a new FU method applying to both convex and non-convex optimization regimes. SIFU naturally applies to FedAvg without additional computational cost for the clients and provides formal guarantees on the quality of the unlearning task. We provide a theoretical analysis of the unlearning properties of SIFU, and practically demonstrate its effectiveness as compared to a panel of unlearning methods from the state-of-the-art.
The proliferation of software and AI comes with a hidden risk: its growing energy and carbon footprint. As concerns regarding environmental sustainability come to the forefront, understanding and optimizing how software impacts the environment becomes paramount. In this paper, we present a state-of-the-art review of methods and tools that enable the measurement of software and AI-related energy and/or carbon emissions. We introduce a taxonomy to categorize the existing work as Monitoring, Estimation, or Black-Box approaches. We delve deeper into the tools and compare them across different dimensions and granularity - for example, whether their measurement encompasses energy and carbon emissions and the components considered (like CPU, GPU, RAM, etc.). We present our observations on the practical use (component wise consolidation of approaches) as well as the challenges that we have identified across the current state-of-the-art. As we start an initiative to address these challenges, we emphasize active collaboration across the community in this important field.
Eliciting requirements for Business Intelligence (BI) systems remains a significant challenge, particularly in changing business environments. This paper introduces a novel AI-driven system, called AutoBIR, that leverages semantic search and Large Language Models (LLMs) to automate and accelerate the specification of BI requirements. The system facilitates intuitive interaction with stakeholders through a conversational interface, translating user inputs into prototype analytic code, descriptions, and data dependencies. Additionally, AutoBIR produces detailed test-case reports, optionally enhanced with visual aids, streamlining the requirement elicitation process. By incorporating user feedback, the system refines BI reporting and system design, demonstrating practical applications for expediting data-driven decision-making. This paper explores the broader potential of generative AI in transforming BI development, illustrating its role in enhancing data engineering practice for large-scale, evolving systems.
Methods for query answering over incomplete knowledge graphs retrieve entities that are \emph{likely} to be answers, which is particularly useful when such answers cannot be reached by direct graph traversal due to missing edges. However, existing approaches have focused on queries formalized using first-order-logic. In practice, many real-world queries involve constraints that are inherently vague or context-dependent, such as preferences for attributes or related categories. Addressing this gap, we introduce the problem of query answering with soft constraints. We formalize the problem and introduce two efficient methods designed to adjust query answer scores by incorporating soft constraints without disrupting the original answers to a query. These methods are lightweight, requiring tuning only two parameters or a small neural network trained to capture soft constraints while maintaining the original ranking structure. To evaluate the task, we extend existing QA benchmarks by generating datasets with soft constraints. Our experiments demonstrate that our methods can capture soft constraints while maintaining robust query answering performance and adding very little overhead. With our work, we explore a new and flexible way to interact with graph databases that allows users to specify their preferences by providing examples interactively.
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
158
Federated learning usually employs a client-server architecture where an orchestrator iteratively aggregates model updates from remote clients and pushes them back a refined model. This approach may be inefficient in cross-silo settings, as close-by data silos with high-speed access links may exchange information faster than with the orchestrator, and the orchestrator may become a communication bottleneck. In this paper we define the problem of topology design for cross-silo federated learning using the theory of max-plus linear systems to compute the system throughput---number of communication rounds per time unit. We also propose practical algorithms that, under the knowledge of measurable network characteristics, find a topology with the largest throughput or with provable throughput guarantees. In realistic Internet networks with 10 Gbps access links for silos, our algorithms speed up training by a factor 9 and 1.5 in comparison to the master-slave architecture and to state-of-the-art MATCHA, respectively. Speedups are even larger with slower access links.
30
A significant portion of the energy consumed by Large Language Models (LLMs) arises from their inference processes; hence developing energy-efficient methods for inference is crucial. While several techniques exist for inference optimization, output compression remains relatively unexplored, with only a few preliminary efforts addressing this aspect. In this work, we first benchmark 12 decoder-only LLMs across 5 datasets, revealing that these models often produce responses that are substantially longer than necessary. We then conduct a comprehensive quality assessment of LLM responses, formally defining six information categories present in LLM responses. We show that LLMs often tend to include redundant or additional information besides the minimal answer. To address this issue of long responses by LLMs, we explore several simple and intuitive prompt-engineering strategies. Empirical evaluation shows that appropriate prompts targeting length reduction and controlling information content can achieve significant energy optimization between 25-60\% by reducing the response length while preserving the quality of LLM responses.
Monitoring, understanding, and optimizing the energy consumption of Machine Learning (ML) are various reasons why it is necessary to evaluate the energy usage of ML. However, there exists no universal tool that can answer this question for all use cases, and there may even be disagreement on how to evaluate energy consumption for a specific use case. Tools and methods are based on different approaches, each with their own advantages and drawbacks, and they need to be mapped out and explained in order to select the most suitable one for a given situation. We address this challenge through two approaches. First, we conduct a systematic literature review of all tools and methods that permit to evaluate the energy consumption of ML (both at training and at inference), irrespective of whether they were originally designed for machine learning or general software. Second, we develop and use an experimental protocol to compare a selection of these tools and methods. The comparison is both qualitative and quantitative on a range of ML tasks of different nature (vision, language) and computational complexity. The systematic literature review serves as a comprehensive guide for understanding the array of tools and methods used in evaluating energy consumption of ML, for various use cases going from basic energy monitoring to consumption optimization. Two open-source repositories are provided for further exploration. The first one contains tools that can be used to replicate this work or extend the current review. The second repository houses the experimental protocol, allowing users to augment the protocol with new ML computing tasks and additional energy evaluation tools.
We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.
Analyzing a visual scene by inferring the configuration of a generative model is widely considered the most flexible and generalizable approach to scene understanding. Yet, one major problem is the computational challenge of the inference procedure, involving a combinatorial search across object identities and poses. Here we propose a neuromorphic solution exploiting three key concepts: (1) a computational framework based on Vector Symbolic Architectures (VSA) with complex-valued vectors; (2) the design of Hierarchical Resonator Networks (HRN) to factorize the non-commutative transforms translation and rotation in visual scenes; (3) the design of a multi-compartment spiking phasor neuron model for implementing complex-valued resonator networks on neuromorphic hardware. The VSA framework uses vector binding operations to form a generative image model in which binding acts as the equivariant operation for geometric transformations. A scene can, therefore, be described as a sum of vector products, which can then be efficiently factorized by a resonator network to infer objects and their poses. The HRN features a partitioned architecture in which vector binding is equivariant for horizontal and vertical translation within one partition and for rotation and scaling within the other partition. The spiking neuron model allows mapping the resonator network onto efficient and low-power neuromorphic hardware. Our approach is demonstrated on synthetic scenes composed of simple 2D shapes undergoing rigid geometric transformations and color changes. A companion paper demonstrates the same approach in real-world application scenarios for machine vision and robotics.
Researchers from Accenture Labs and Inria adapted counterfactual explanations for black-box credit risk models to provide actionable insights for both accepted and rejected applications. They introduced weighting strategies that reduced the number of features needing change in explanations by an average of 11.2%, making them more interpretable for end-users and aiding regulatory compliance.
Deepfake represents a category of face-swapping attacks that leverage machine learning models such as autoencoders or generative adversarial networks. Although the concept of the face-swapping is not new, its recent technical advances make fake content (e.g., images, videos) more realistic and imperceptible to Humans. Various detection techniques for Deepfake attacks have been explored. These methods, however, are passive measures against Deepfakes as they are mitigation strategies after the high-quality fake content is generated. More importantly, we would like to think ahead of the attackers with robust defenses. This work aims to take an offensive measure to impede the generation of high-quality fake images or videos. Specifically, we propose to use novel transformation-aware adversarially perturbed faces as a defense against GAN-based Deepfake attacks. Different from the naive adversarial faces, our proposed approach leverages differentiable random image transformations during the generation. We also propose to use an ensemble-based approach to enhance the defense robustness against GAN-based Deepfake variants under the black-box setting. We show that training a Deepfake model with adversarial faces can lead to a significant degradation in the quality of synthesized faces. This degradation is twofold. On the one hand, the quality of the synthesized faces is reduced with more visual artifacts such that the synthesized faces are more obviously fake or less convincing to human observers. On the other hand, the synthesized faces can easily be detected based on various metrics.
Digital media platforms (e.g., science blogs) offer opportunities to communicate scientific content to general audiences at scale. However, these audiences vary in their scientific expertise, literacy levels, and personal backgrounds, making effective science communication challenging. To address this challenge, we designed TranSlider, an AI-powered tool that generates personalized translations of scientific text based on individual user profiles (e.g., hobbies, location, and education). Our tool features an interactive slider that allows users to steer the degree of personalization from 0 (weakly relatable) to 100 (strongly relatable), leveraging LLMs to generate the translations with chosen degrees. Through an exploratory study with 15 participants, we investigated both the utility of these AI-personalized translations and how interactive reading features influenced users' understanding and reading experiences. We found that participants who preferred higher degrees of personalization appreciated the relatable and contextual translations, while those who preferred lower degrees valued concise translations with subtle contextualization. Furthermore, participants reported the compounding effect of multiple translations on their understanding of scientific content. Drawing on these findings, we discuss several implications for facilitating science communication and designing steerable interfaces to support human-AI alignment.
Recent advances have led to the availability of many pre-trained language models (PLMs); however, a question that remains is how much data is truly needed to fine-tune PLMs for downstream tasks? In this work, we introduce DEFT-UCS, a data-efficient fine-tuning framework that leverages unsupervised core-set selection to identify a smaller, representative dataset that reduces the amount of data needed to fine-tune PLMs for downstream tasks. We examine the efficacy of DEFT-UCS in the context of text-editing LMs, and compare to the state-of-the art text-editing model, CoEDIT. Our results demonstrate that DEFT-UCS models are just as accurate as CoEDIT, across eight different datasets consisting of six different editing tasks, while finetuned on 70% less data.
Knowledge gaps often arise during communication due to diverse backgrounds, knowledge bases, and vocabularies. With recent LLM developments, providing real-time knowledge support is increasingly viable, but is challenging due to shared and individual cognitive limitations (e.g., attention, memory, and comprehension) and the difficulty in understanding the user's context and internal knowledge. To address these challenges, we explore the key question of understanding how people want to receive real-time knowledge support. We built StopGap -- a prototype that provides real-time knowledge support for explaining jargon words in videos -- to conduct a design probe study (N=24) that explored multiple visual knowledge representation formats. Our study revealed individual differences in preferred representations and highlighted the importance of user agency, personalization, and mixed-initiative assistance. Based on our findings, we map out six key design dimensions for real-time LLM knowledge support systems and offer insights for future research in this space.
A systematic study benchmarks the energy consumption of large language model inference across diverse models and tasks, revealing key factors influencing energy use and offering practical guidelines for more sustainable LLM deployment. The research quantifies the impact of parameters like output length, model architecture, and batching/quantization, demonstrating that optimizing these can significantly reduce energy footprints.
We study the problem of explaining link predictions in the Knowledge Graph Embedding (KGE) models. We propose an example-based approach that exploits the latent space representation of nodes and edges in a knowledge graph to explain predictions. We evaluated the importance of identified triples by observing progressing degradation of model performance upon influential triples removal. Our experiments demonstrate that this approach to generate explanations outperforms baselines on KGE models for two publicly available datasets.
There are no more papers matching your filters at the moment.