The University of Newcastle
Code search aims to retrieve semantically relevant code snippets for a given natural language query. Recently, many approaches employing contrastive learning have shown promising results on code representation learning and greatly improved the performance of code search. However, there is still a lot of room for improvement in using contrastive learning for code search. In this paper, we propose CoCoSoDa to effectively utilize contrastive learning for code search via two key factors in contrastive learning: data augmentation and negative samples. Specifically, soft data augmentation is to dynamically masking or replacing some tokens with their types for input sequences to generate positive samples. Momentum mechanism is used to generate large and consistent representations of negative samples in a mini-batch through maintaining a queue and a momentum encoder. In addition, multimodal contrastive learning is used to pull together representations of code-query pairs and push apart the unpaired code snippets and queries. We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages. Experimental results show that: (1) CoCoSoDa outperforms 14 baselines and especially exceeds CodeBERT, GraphCodeBERT, and UniXcoder by 13.3%, 10.5%, and 5.9% on average MRR scores, respectively. (2) The ablation studies show the effectiveness of each component of our approach. (3) We adapt our techniques to several different pre-trained models such as RoBERTa, CodeBERT, and GraphCodeBERT and observe a significant boost in their performance in code search. (4) Our model performs robustly under different hyper-parameters. Furthermore, we perform qualitative and quantitative analyses to explore reasons behind the good performance of our model.
18
4DGS-Craft presents a framework for consistently and interactively editing dynamic 4D Gaussian Splatting scenes. It integrates a 4D-aware InstructPix2Pix model with VGGT features and multi-view consistency, an LLM for complex user intent understanding, and a Gaussian selection mechanism to preserve non-edited regions, yielding superior consistency and instruction adherence over existing methods.
To evaluate the repository-level code generation capabilities of Large Language Models (LLMs) in complex real-world software development scenarios, many evaluation methods have been developed. These methods typically leverage contextual code from the latest version of a project to assist LLMs in accurately generating the desired function. However, such evaluation methods fail to consider the dynamic evolution of software projects over time, which we refer to as evolution-ignored settings. This in turn results in inaccurate evaluation of LLMs' performance. In this paper, we conduct an empirical study to deeply understand LLMs' code generation performance within settings that reflect the evolution nature of software development. To achieve this, we first construct an evolution-aware repository-level code generation dataset, namely HumanEvo, equipped with an automated execution-based evaluation tool. Second, we manually categorize HumanEvo according to dependency levels to more comprehensively analyze the model's performance in generating functions with different dependency levels. Third, we conduct extensive experiments on HumanEvo with seven representative and diverse LLMs to verify the effectiveness of the proposed benchmark. We obtain several important findings through our experimental study. For example, we find that previous evolution-ignored evaluation methods result in inflated performance of LLMs, with performance overestimations ranging from 10.0% to 61.1% under different context acquisition methods, compared to the evolution-aware evaluation approach. Based on the findings, we give actionable suggestions for more realistic evaluation of LLMs on code generation. We also build a shared evolution-aware code generation toolbox to facilitate future research.
Wide-angle videos in few-shot action recognition (FSAR) effectively express actions within specific scenarios. However, without a global understanding of both subjects and background, recognizing actions in such samples remains challenging because of the background distractions. Receptance Weighted Key Value (RWKV), which learns interaction between various dimensions, shows promise for global modeling. While directly applying RWKV to wide-angle FSAR may fail to highlight subjects due to excessive background information. Additionally, temporal relation degraded by frames with similar backgrounds is difficult to reconstruct, further impacting performance. Therefore, we design the CompOund SegmenTation and Temporal REconstructing RWKV (Otter). Specifically, the Compound Segmentation Module~(CSM) is devised to segment and emphasize key patches in each frame, effectively highlighting subjects against background information. The Temporal Reconstruction Module (TRM) is incorporated into the temporal-enhanced prototype construction to enable bidirectional scanning, allowing better reconstruct temporal relation. Furthermore, a regular prototype is combined with the temporal-enhanced prototype to simultaneously enhance subject emphasis and temporal modeling, improving wide-angle FSAR performance. Extensive experiments on benchmarks such as SSv2, Kinetics, UCF101, and HMDB51 demonstrate that Otter achieves state-of-the-art performance. Extra evaluation on the VideoBadminton dataset further validates the superiority of Otter in wide-angle FSAR.
Pre-trained code representation models such as CodeBERT have demonstrated superior performance in a variety of software engineering tasks, yet they are often heavy in complexity, quadratically with the length of the input sequence. Our empirical analysis of CodeBERT's attention reveals that CodeBERT pays more attention to certain types of tokens and statements such as keywords and data-relevant statements. Based on these findings, we propose DietCode, which aims at lightweight leverage of large pre-trained models for source code. DietCode simplifies the input program of CodeBERT with three strategies, namely, word dropout, frequency filtering, and an attention-based strategy which selects statements and tokens that receive the most attention weights during pre-training. Hence, it gives a substantial reduction in the computational cost without hampering the model performance. Experimental results on two downstream tasks show that DietCodeBERT provides comparable results to CodeBERT with 40% less computational cost in fine-tuning and testing.
3D Gaussian Splatting (3DGS) data compression is crucial for enabling efficient storage and transmission in 3D scene modeling. However, its development remains limited due to inadequate entropy models and suboptimal quantization strategies for both lossless and lossy compression scenarios, where existing methods have yet to 1) fully leverage hyperprior information to construct robust conditional entropy models, and 2) apply fine-grained, element-wise quantization strategies for improved compression granularity. In this work, we propose a novel Mixture of Priors (MoP) strategy to simultaneously address these two challenges. Specifically, inspired by the Mixture-of-Experts (MoE) paradigm, our MoP approach processes hyperprior information through multiple lightweight MLPs to generate diverse prior features, which are subsequently integrated into the MoP feature via a gating mechanism. To enhance lossless compression, the resulting MoP feature is utilized as a hyperprior to improve conditional entropy modeling. Meanwhile, for lossy compression, we employ the MoP feature as guidance information in an element-wise quantization procedure, leveraging a prior-guided Coarse-to-Fine Quantization (C2FQ) strategy with a predefined quantization step value. Specifically, we expand the quantization step value into a matrix and adaptively refine it from coarse to fine granularity, guided by the MoP feature, thereby obtaining a quantization step matrix that facilitates element-wise quantization. Extensive experiments demonstrate that our proposed 3DGS data compression framework achieves state-of-the-art performance across multiple benchmarks, including Mip-NeRF360, BungeeNeRF, DeepBlending, and Tank&Temples.
Log parsing, the process of converting raw log messages into structured formats, is an important initial step for automated analysis of logs of large-scale software systems. Traditional log parsers often rely on heuristics or handcrafted features, which may not generalize well across diverse log sources or require extensive model tuning. Recently, some log parsers have utilized powerful generative capabilities of large language models (LLMs). However, they heavily rely on demonstration examples, resulting in substantial overhead in LLM invocations. To address these issues, we propose LogBatcher, a cost-effective LLM-based log parser that requires no training process or labeled data. To leverage latent characteristics of log data and reduce the overhead, we divide logs into several partitions through clustering. Then we perform a cache matching process to match logs with previously parsed log templates. Finally, we provide LLMs with better prompt context specialized for log parsing by batching a group of logs from each partition. We have conducted experiments on 16 public log datasets and the results show that LogBatcher is effective and efficient for log parsing.
Automated lesion segmentation of medical images has made tremendous improvements in recent years due to deep learning advancements. However, accurately capturing fine-grained global and regional feature representations remains a challenge. Many existing methods obtain suboptimal performance on complex lesion segmentation due to information loss during typical downsampling operations and the insufficient capture of either regional or global features. To address these issues, we propose the Global and Regional Compensation Segmentation Framework (GRCSF), which introduces two key innovations: the Global Compensation Unit (GCU) and the Region Compensation Unit (RCU). The proposed GCU addresses resolution loss in the U-shaped backbone by preserving global contextual features and fine-grained details during multiscale downsampling. Meanwhile, the RCU introduces a self-supervised learning (SSL) residual map generated by Masked Autoencoders (MAE), obtained as pixel-wise differences between reconstructed and original images, to highlight regions with potential lesions. These SSL residual maps guide precise lesion localization and segmentation through a patch-based cross-attention mechanism that integrates regional spatial and pixel-level features. Additionally, the RCU incorporates patch-level importance scoring to enhance feature fusion by leveraging global spatial information from the backbone. Experiments on two publicly available medical image segmentation datasets, including brain stroke lesion and coronary artery calcification datasets, demonstrate that our GRCSF outperforms state-of-the-art methods, confirming its effectiveness across diverse lesion types and its potential as a generalizable lesion segmentation solution.
Practices in the built environment have become more digitalized with the rapid development of modern design and construction technologies. However, the requirement of practitioners or scholars to gather complicated professional knowledge in the built environment has not been satisfied yet. In this paper, more than 80,000 paper abstracts in the built environment field were obtained to build a knowledge graph, a knowledge base storing entities and their connective relations in a graph-structured data model. To ensure the retrieval accuracy of the entities and relations in the knowledge graph, two well-annotated datasets have been created, containing 2,000 instances and 1,450 instances each in 29 relations for the named entity recognition task and relation extraction task respectively. These two tasks were solved by two BERT-based models trained on the proposed dataset. Both models attained an accuracy above 85% on these two tasks. More than 200,000 high-quality relations and entities were obtained using these models to extract all abstract data. Finally, this knowledge graph is presented as a self-developed visualization system to reveal relations between various entities in the domain. Both the source code and the annotated dataset can be found here: this https URL
6
Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions worldwide. In the absence of effective treatment options, early diagnosis is crucial for initiating management strategies to delay disease onset and slow down its progression. In this study, we propose Retformer, a novel transformer-based architecture for detecting AD using retinal imaging modalities, leveraging the power of transformers and explainable artificial intelligence. The Retformer model is trained on datasets of different modalities of retinal images from patients with AD and age-matched healthy controls, enabling it to learn complex patterns and relationships between image features and disease diagnosis. To provide insights into the decision-making process of our model, we employ the Gradient-weighted Class Activation Mapping algorithm to visualize the feature importance maps, highlighting the regions of the retinal images that contribute most significantly to the classification outcome. These findings are compared to existing clinical studies on detecting AD using retinal biomarkers, allowing us to identify the most important features for AD detection in each imaging modality. The Retformer model outperforms a variety of benchmark algorithms across different performance metrics by margins of up to 11\.
Recently, pre-trained programming language models such as CodeBERT have demonstrated substantial gains in code search. Despite showing great performance, they rely on the availability of large amounts of parallel data to fine-tune the semantic mappings between queries and code. This restricts their practicality in domain-specific languages with relatively scarce and expensive data. In this paper, we propose CroCS, a novel approach for domain-specific code search. CroCS employs a transfer learning framework where an initial program representation model is pre-trained on a large corpus of common programming languages (such as Java and Python) and is further adapted to domain-specific languages such as SQL and Solidity. Unlike cross-language CodeBERT, which is directly fine-tuned in the target language, CroCS adapts a few-shot meta-learning algorithm called MAML to learn the good initialization of model parameters, which can be best reused in a domain-specific language. We evaluate the proposed approach on two domain-specific languages, namely, SQL and Solidity, with model transferred from two widely used languages (Python and Java). Experimental results show that CDCS significantly outperforms conventional pre-trained code models that are directly fine-tuned in domain-specific languages, and it is particularly effective for scarce data.
Anti-money laundering (AML) research is constrained by the lack of publicly shareable, regulation-aligned transaction datasets. We present AMLNet, a knowledge-based multi-agent framework with two coordinated units: a regulation-aware transaction generator and an ensemble detection pipeline. The generator produces 1,090,173 synthetic transactions (approximately 0.16\% laundering-positive) spanning core laundering phases (placement, layering, integration) and advanced typologies (e.g., structuring, adaptive threshold behavior). Regulatory alignment reaches 75\% based on AUSTRAC rule coverage (Section 4.2), while a composite technical fidelity score of 0.75 summarizes temporal, structural, and behavioral realism components (Section 4.4). The detection ensemble achieves F1 0.90 (precision 0.84, recall 0.97) on the internal test partitions of AMLNet and adapts to the external SynthAML dataset, indicating architectural generalizability across different synthetic generation paradigms. We provide multi-dimensional evaluation (regulatory, temporal, network, behavioral) and release the dataset (Version 1.0, this https URL), to advance reproducible and regulation-conscious AML experimentation.
The OptLLM framework optimizes large language model usage by intelligently assigning queries to specific LLMs, balancing computational cost and accuracy. It achieved cost reductions of 2.40% to 49.18% for equivalent accuracy compared to using a single best LLM, and up to 69.05% accuracy improvements over other multi-objective optimization methods.
Disparity compensation represents the primary strategy in stereo video compression (SVC) for exploiting cross-view redundancy. These mechanisms can be broadly categorized into two types: one that employs explicit horizontal shifting, and another that utilizes an implicit cross-attention mechanism to reduce cross-view disparity redundancy. In this work, we propose a hybrid disparity compensation (HDC) strategy that leverages explicit pixel displacement as a robust prior feature to simplify optimization and perform implicit cross-attention mechanisms for subsequent warping operations, thereby capturing a broader range of disparity information. Specifically, HDC first computes a similarity map by fusing the horizontally shifted cross-view features to capture pixel displacement information. This similarity map is then normalized into an "explicit pixel-wise attention score" to perform the cross-attention mechanism, implicitly aligning features from one view to another. Building upon HDC, we introduce a novel end-to-end optimized neural stereo video compression framework, which integrates HDC-based modules into key coding operations, including cross-view feature extraction and reconstruction (HDC-FER) and cross-view entropy modeling (HDC-EM). Extensive experiments on SVC benchmarks, including KITTI 2012, KITTI 2015, and Nagoya, which cover both autonomous driving and general scenes, demonstrate that our framework outperforms both neural and traditional SVC methodologies.
Code search with natural language helps us reuse existing code snippets. Thanks to the Transformer-based pretraining models, the performance of code search has been improved significantly. However, due to the quadratic complexity of multi-head self-attention, there is a limit on the input token length. For efficient training on standard GPUs like V100, existing pretrained code models, including GraphCodeBERT, CodeBERT, RoBERTa (code), take the first 256 tokens by default, which makes them unable to represent the complete information of long code that is greater than 256 tokens. To tackle the long code problem, we propose a new baseline SEA (Split, Encode and Aggregate), which splits long code into code blocks, encodes these blocks into embeddings, and aggregates them to obtain a comprehensive long code representation. With SEA, we could directly use Transformer-based pretraining models to model long code without changing their internal structure and re-pretraining. We also compare SEA with sparse Trasnformer methods. With GraphCodeBERT as the encoder, SEA achieves an overall mean reciprocal ranking score of 0.785, which is 10.1% higher than GraphCodeBERT on the CodeSearchNet benchmark, justifying SEA as a strong baseline for long code search. Our source code and experimental data are available at: this https URL.
Software logs play an essential role in ensuring the reliability and maintainability of large-scale software systems, as they are often the sole source of runtime information. Log parsing, which converts raw log messages into structured data, is an important initial step towards downstream log analytics. In recent studies, ChatGPT, the current cutting-edge large language model (LLM), has been widely applied to a wide range of software engineering tasks. However, its performance in automated log parsing remains unclear. In this paper, we evaluate ChatGPT's ability to undertake log parsing by addressing two research questions. (1) Can ChatGPT effectively parse logs? (2) How does ChatGPT perform with different prompting methods? Our results show that ChatGPT can achieve promising results for log parsing with appropriate prompts, especially with few-shot prompting. Based on our findings, we outline several challenges and opportunities for ChatGPT-based log parsing.
20
The rapid advancement of Intelligent Transportation Systems (ITS) presents challenges, particularly with missing data in multi-modal transportation and the complexity of handling diverse sequential tasks within a centralized framework. To address these issues, we propose the Spatial-Temporal Large Language Model Diffusion (STLLM-DF), an innovative model that leverages Denoising Diffusion Probabilistic Models (DDPMs) and Large Language Models (LLMs) to improve multi-task transportation prediction. The DDPM's robust denoising capabilities enable it to recover underlying data patterns from noisy inputs, making it particularly effective in complex transportation systems. Meanwhile, the non-pretrained LLM dynamically adapts to spatial-temporal relationships within multi-modal networks, allowing the system to efficiently manage diverse transportation tasks in both long-term and short-term predictions. Extensive experiments demonstrate that STLLM-DF consistently outperforms existing models, achieving an average reduction of 2.40\% in MAE, 4.50\% in RMSE, and 1.51\% in MAPE. This model significantly advances centralized ITS by enhancing predictive accuracy, robustness, and overall system performance across multiple tasks, thus paving the way for more effective spatio-temporal traffic forecasting through the integration of frozen transformer language models and diffusion techniques.
We present a topological framework for analysing neural time series that integrates Transfer Entropy (TE) with directed Persistent Homology (PH) to characterize information flow in spiking neural systems. TE quantifies directional influence between neurons, producing weighted, directed graphs that reflect dynamic interactions. These graphs are then analyzed using PH, enabling assessment of topological complexity across multiple structural scales and dimensions. We apply this TE+PH pipeline to synthetic spiking networks trained on logic gate tasks, image-classification networks exposed to structured and perturbed inputs, and mouse cortical recordings annotated with behavioral events. Across all settings, the resulting topological signatures reveal distinctions in task complexity, stimulus structure, and behavioral regime. Higher-dimensional features become more prominent in complex or noisy conditions, reflecting interaction patterns that extend beyond pairwise connectivity. Our findings offer a principled approach to mapping directed information flow onto global organizational patterns in both artificial and biological neural systems. The framework is generalizable and interpretable, making it well suited for neural systems with time-resolved and binary spiking data.
In this work, we propose a novel compression framework for 3D Gaussian Splatting (3DGS) data. Building on anchor-based 3DGS methodologies, our approach compresses all attributes within each anchor by introducing a novel Hybrid Entropy Model for 3D Gaussian Splatting (HEMGS) to achieve hybrid lossy-lossless compression. It consists of three main components: a variable-rate predictor, a hyperprior network, and an autoregressive network. First, unlike previous methods that adopt multiple models to achieve multi-rate lossy compression, thereby increasing training overhead, our variable-rate predictor enables variable-rate compression with a single model and a hyperparameter λ\lambda by producing a learned Quantization Step feature for versatile lossy compression. Second, to improve lossless compression, the hyperprior network captures both scene-agnostic and scene-specific features to generate a prior feature, while the autoregressive network employs an adaptive context selection algorithm with flexible receptive fields to produce a contextual feature. By integrating these two features, HEMGS can accurately estimate the distribution of the current coding element within each attribute, enabling improved entropy coding and reduced storage. We integrate HEMGS into a compression framework, and experimental results on four benchmarks indicate that HEMGS achieves about a 40% average reduction in size while maintaining rendering quality over baseline methods and achieving state-of-the-art compression results.
Automatic detection of intake gestures is a key element of automatic dietary monitoring. Several types of sensors, including inertial measurement units (IMU) and video cameras, have been used for this purpose. The common machine learning approaches make use of the labeled sensor data to automatically learn how to make detections. One characteristic, especially for deep learning models, is the need for large datasets. To meet this need, we collected the Objectively Recognizing Eating Behavior and Associated Intake (OREBA) dataset. The OREBA dataset aims to provide comprehensive multi-sensor data recorded during the course of communal meals for researchers interested in intake gesture detection. Two scenarios are included, with 100 participants for a discrete dish and 102 participants for a shared dish, totalling 9069 intake gestures. Available sensor data consists of synchronized frontal video and IMU with accelerometer and gyroscope for both hands. We report the details of data collection and annotation, as well as details of sensor processing. The results of studies on IMU and video data involving deep learning models are reported to provide a baseline for future research. Specifically, the best baseline models achieve performances of F1F_1 = 0.853 for the discrete dish using video and F1F_1 = 0.852 for the shared dish using inertial data.
There are no more papers matching your filters at the moment.