Hanoi University of Science and Technology
Designing effective algorithmic components remains a fundamental obstacle in tackling NP-hard combinatorial optimization problems (COPs), where solvers often rely on carefully hand-crafted strategies. Despite recent advances in using large language models (LLMs) to synthesize high-quality components, most approaches restrict the search to a single element - commonly a heuristic scoring function - thus missing broader opportunities for innovation. In this paper, we introduce a broader formulation of solver design as a multi-strategy optimization problem, which seeks to jointly improve a set of interdependent components under a unified objective. To address this, we propose Multi-strategy Optimization via Turn-based Interactive Framework (MOTIF) - a novel framework based on Monte Carlo Tree Search that facilitates turn-based optimization between two LLM agents. At each turn, an agent improves one component by leveraging the history of both its own and its opponent's prior updates, promoting both competitive pressure and emergent cooperation. This structured interaction broadens the search landscape and encourages the discovery of diverse, high-performing solutions. Experiments across multiple COP domains show that MOTIF consistently outperforms state-of-the-art methods, highlighting the promise of turn-based, multi-agent prompting for fully automated solver design.
Vision-Language Foundation Models (VLMs), trained on large-scale multimodal datasets, have driven significant advances in Artificial Intelligence (AI) by enabling rich cross-modal reasoning. Despite their success in general domains, applying these models to medical imaging remains challenging due to the limited availability of diverse imaging modalities and multilingual clinical data. Most existing medical VLMs are trained on a subset of imaging modalities and focus primarily on high-resource languages, thus limiting their generalizability and clinical utility. To address these limitations, we introduce a novel Vietnamese-language multimodal medical dataset consisting of 2,757 whole-body PET/CT volumes from independent patients and their corresponding full-length clinical reports. This dataset is designed to fill two pressing gaps in medical AI development: (1) the lack of PET/CT imaging data in existing VLMs training corpora, which hinders the development of models capable of handling functional imaging tasks; and (2) the underrepresentation of low-resource languages, particularly the Vietnamese language, in medical vision-language research. To the best of our knowledge, this is the first dataset to provide comprehensive PET/CT-report pairs in Vietnamese. We further introduce a training framework to enhance VLMs' learning, including data augmentation and expert-validated test sets. We conduct comprehensive experiments benchmarking state-of-the-art VLMs on downstream tasks. The experimental results show that incorporating our dataset significantly improves the performance of existing VLMs. We believe this dataset and benchmark will serve as a pivotal step in advancing the development of more robust VLMs for medical imaging, especially for low-resource languages and clinical use in Vietnamese healthcare. The source code is available at this https URL.
1
This research introduces the largest paired CT-PET dataset and a domain-knowledge-guided diffusion model (CPDM) for synthesizing PET images from CT scans. The approach demonstrates superior performance in generating diagnostically accurate synthetic PET images, potentially reducing examination costs and patient radiation exposure.
10
Cross-domain offline reinforcement learning (RL) seeks to enhance sample efficiency in offline RL by utilizing additional offline source datasets. A key challenge is to identify and utilize source samples that are most relevant to the target domain. Existing approaches address this challenge by measuring domain gaps through domain classifiers, target transition dynamics modeling, or mutual information estimation using contrastive loss. However, these methods often require large target datasets, which is impractical in many real-world scenarios. In this work, we address cross-domain offline RL under a limited target data setting, identifying two primary challenges: (1) Dataset imbalance, which is caused by large source and small target datasets and leads to overfitting in neural network-based domain gap estimators, resulting in uninformative measurements; and (2) Partial domain overlap, where only a subset of the source data is closely aligned with the target domain. To overcome these issues, we propose DmC, a novel framework for cross-domain offline RL with limited target samples. Specifically, DmC utilizes kk-nearest neighbor (kk-NN) based estimation to measure domain proximity without neural network training, effectively mitigating overfitting. Then, by utilizing this domain proximity, we introduce a nearest-neighbor-guided diffusion model to generate additional source samples that are better aligned with the target domain, thus enhancing policy learning with more effective source samples. Through theoretical analysis and extensive experiments in diverse MuJoCo environments, we demonstrate that DmC significantly outperforms state-of-the-art cross-domain offline RL methods, achieving substantial performance gains.
Multilingual speech translation (ST) and machine translation (MT) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, and Simplified/Traditional Chinese, together with the models. With 290,000 samples, this is the largest medical MT dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most comprehensive ST analysis in the field's history, to our best knowledge, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: this https URL
1
Multi-objective combinatorial optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives. Although traditional evolutionary algorithms can be effective, they typically depend on domain knowledge and repeated parameter tuning, limiting flexibility when applied to unseen MOCOP instances. Recently, integration of Large Language Models (LLMs) into evolutionary computation has opened new avenues for automatic heuristic generation, using their advanced language understanding and code synthesis capabilities. Nevertheless, most existing approaches predominantly focus on single-objective tasks, often neglecting key considerations such as runtime efficiency and heuristic diversity in multi-objective settings. To bridge this gap, we introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE), a novel enhancement of the Simple Evolutionary Multiobjective Optimization (SEMO) framework that leverages LLMs and Pareto Front Grid (PFG) technique. By partitioning the objective space into grids and retaining top-performing candidates to guide heuristic generation, MPaGE utilizes LLMs to prioritize heuristics with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population. Through extensive evaluations, MPaGE demonstrates superior performance over existing LLM-based frameworks, and achieves competitive results to traditional Multi-objective evolutionary algorithms (MOEAs), with significantly faster runtime. Our code is available at: this https URL.
10
Today, computer systems hold large amounts of personal data. Yet while such an abundance of data allows breakthroughs in artificial intelligence, and especially machine learning (ML), its existence can be a threat to user privacy, and it can weaken the bonds of trust between humans and AI. Recent regulations now require that, on request, private information about a user must be removed from both computer systems and from ML models, i.e. ``the right to be forgotten''). While removing data from back-end databases should be straightforward, it is not sufficient in the AI context as ML models often `remember' the old data. Contemporary adversarial attacks on trained models have proven that we can learn whether an instance or an attribute belonged to the training data. This phenomenon calls for a new paradigm, namely machine unlearning, to make ML models forget about particular data. It turns out that recent works on machine unlearning have not been able to completely solve the problem due to the lack of common frameworks and resources. Therefore, this paper aspires to present a comprehensive examination of machine unlearning's concepts, scenarios, methods, and applications. Specifically, as a category collection of cutting-edge studies, the intention behind this article is to serve as a comprehensive resource for researchers and practitioners seeking an introduction to machine unlearning and its formulations, design criteria, removal requests, algorithms, and applications. In addition, we aim to highlight the key findings, current trends, and new research areas that have not yet featured the use of machine unlearning but could benefit greatly from it. We hope this survey serves as a valuable resource for ML researchers and those seeking to innovate privacy technologies. Our resources are publicly available at this https URL.
794
Model-based clustering integrated with variable selection is a powerful tool for uncovering latent structures within complex data. However, its effectiveness is often hindered by challenges such as identifying relevant variables that define heterogeneous subgroups and handling data that are missing not at random, a prevalent issue in fields like transcriptomics. While several notable methods have been proposed to address these problems, they typically tackle each issue in isolation, thereby limiting their flexibility and adaptability. This paper introduces a unified framework designed to address these challenges simultaneously. Our approach incorporates a data-driven penalty matrix into penalized clustering to enable more flexible variable selection, along with a mechanism that explicitly models the relationship between missingness and latent class membership. We demonstrate that, under certain regularity conditions, the proposed framework achieves both asymptotic consistency and selection consistency, even in the presence of missing data. This unified strategy significantly enhances the capability and efficiency of model-based clustering, advancing methodologies for identifying informative variables that define homogeneous subgroups in the presence of complex missing data patterns. The performance of the framework, including its computational efficiency, is evaluated through simulations and demonstrated using both synthetic and real-world transcriptomic datasets.
COT2ALIGN offers a knowledge distillation framework that enables the transfer of reasoning capabilities from large teacher models to smaller student models, even when they utilize different tokenizers. It achieves this by combining Chain-of-Thought data augmentation with an Optimal Transport-based alignment mechanism for sequence-level and layer-wise knowledge transfer, consistently outperforming existing baselines with ROUGE-L improvements up to 1.87% and enhancing reasoning quality as judged by GPT-4.
The ease of access to large language models (LLMs) has enabled a widespread of machine-generated texts, and now it is often hard to tell whether a piece of text was human-written or machine-generated. This raises concerns about potential misuse, particularly within educational and academic domains. Thus, it is important to develop practical systems that can automate the process. Here, we present one such system, LLM-DetectAIve, designed for fine-grained detection. Unlike most previous work on machine-generated text detection, which focused on binary classification, LLM-DetectAIve supports four categories: (i) human-written, (ii) machine-generated, (iii) machine-written, then machine-humanized, and (iv) human-written, then machine-polished. Category (iii) aims to detect attempts to obfuscate the fact that a text was machine-generated, while category (iv) looks for cases where the LLM was used to polish a human-written text, which is typically acceptable in academic writing, but not in education. Our experiments show that LLM-DetectAIve can effectively identify the above four categories, which makes it a potentially useful tool in education, academia, and other domains. LLM-DetectAIve is publicly accessible at this https URL The video describing our system is available at this https URL
Research by Jay et al. evaluates the precise geolocation capabilities of modern Vision-Language Models (VLMs), demonstrating that these systems can infer exact locations from single images with high accuracy. The study found that top VLMs outperformed typical human performance out-of-the-box, and with access to Google Street View, they surpassed expert human GeoGuessr players, raising privacy and safety concerns.
This paper studies the black-box optimization task which aims to find the maxima of a black-box function using a static set of its observed input-output pairs. This is often achieved via learning and optimizing a surrogate function with that offline data. Alternatively, it can also be framed as an inverse modeling task that maps a desired performance to potential input candidates that achieve it. Both approaches are constrained by the limited amount of offline data. To mitigate this limitation, we introduce a new perspective that casts offline optimization as a distributional translation task. This is formulated as learning a probabilistic bridge transforming an implicit distribution of low-value inputs (i.e., offline data) into another distribution of high-value inputs (i.e., solution candidates). Such probabilistic bridge can be learned using low- and high-value inputs sampled from synthetic functions that resemble the target function. These synthetic functions are constructed as the mean posterior of multiple Gaussian processes fitted with different parameterizations on the offline data, alleviating the data bottleneck. The proposed approach is evaluated on an extensive benchmark comprising most recent methods, demonstrating significant improvement and establishing a new state-of-the-art performance. Our code is publicly available at this https URL.
Prompt-based methods have recently gained prominence in Continual Learning (CL) due to their strong performance and memory efficiency. A prevalent strategy in this paradigm assigns a dedicated subset of prompts to each task, which, while effective, incurs substantial computational overhead and causes memory requirements to scale linearly with the number of tasks. Conversely, approaches employing a single shared prompt across tasks offer greater efficiency but often suffer from degraded performance due to knowledge interference. To reconcile this trade-off, we propose SMoPE, a novel framework that integrates the benefits of both task-specific and shared prompt strategies. Inspired by recent findings on the relationship between Prefix Tuning and Mixture of Experts (MoE), SMoPE organizes a shared prompt into multiple "prompt experts" within a sparse MoE architecture. For each input, only a select subset of relevant experts is activated, effectively mitigating interference. To facilitate expert selection, we introduce a prompt-attention score aggregation mechanism that computes a unified proxy score for each expert, enabling dynamic and sparse activation. Additionally, we propose an adaptive noise mechanism to encourage balanced expert utilization while preserving knowledge from prior tasks. To further enhance expert specialization, we design a prototype-based loss function that leverages prefix keys as implicit memory representations. Extensive experiments across multiple CL benchmarks demonstrate that SMoPE consistently outperforms task-specific prompt methods and achieves performance competitive with state-of-the-art approaches, all while significantly reducing parameter counts and computational costs.
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA. Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its "style" to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
Existing methods for merging experts during model training and fine-tuning predominantly rely on Euclidean geometry, which assumes a flat parameter space. This assumption can limit the model's generalization ability, especially during the pre-training phase, where the parameter manifold might exhibit more complex curvature. Curvature-aware merging methods typically require additional information and computational resources to approximate the Fisher Information Matrix, adding memory overhead. In this paper, we introduce CAMEx (Curvature-Aware Merging of Experts), a novel expert merging protocol that incorporates natural gradients to account for the non-Euclidean curvature of the parameter manifold. By leveraging natural gradients, CAMEx adapts more effectively to the structure of the parameter space, improving alignment between model updates and the manifold's geometry. This approach enhances both pre-training and fine-tuning, resulting in better optimization trajectories and improved generalization without the substantial memory overhead typically associated with curvature-aware methods. Our contributions are threefold: (1) CAMEx significantly outperforms traditional Euclidean-based expert merging techniques across various natural language processing tasks, leading to enhanced performance during pre-training and fine-tuning; (2) we introduce a dynamic merging architecture that optimizes resource utilization, achieving high performance while reducing computational costs, facilitating efficient scaling of large language models; and (3) we provide both theoretical and empirical evidence to demonstrate the efficiency of our proposed method. The code is publicly available at: this https URL
Recent research in speaker recognition aims to address vulnerabilities due to variations between enrolment and test utterances, particularly in the multi-genre phenomenon where the utterances are in different speech genres. Previous resources for Vietnamese speaker recognition are either limited in size or do not focus on genre diversity, leaving studies in multi-genre effects unexplored. This paper introduces VoxVietnam, the first multi-genre dataset for Vietnamese speaker recognition with over 187,000 utterances from 1,406 speakers and an automated pipeline to construct a dataset on a large scale from public sources. Our experiments show the challenges posed by the multi-genre phenomenon to models trained on a single-genre dataset, and demonstrate a significant increase in performance upon incorporating the VoxVietnam into the training process. Our experiments are conducted to study the challenges of the multi-genre phenomenon in speaker recognition and the performance gain when the proposed dataset is used for multi-genre training.
HSEvo, developed by researchers from Hanoi University of Science and Technology and George Mason University, presents an LLM-based framework for automatic heuristic design that explicitly manages population diversity to achieve superior performance in combinatorial optimization problems. It leverages novel diversity metrics, a Harmony Search component for exploitation, and an efficient Flash Reflection mechanism, demonstrating a robust balance between exploration and convergence.
4
Fast-FedUL offers a training-free approach to client-level machine unlearning in federated learning, providing provable skew resilience to efficiently remove data influence. This method performs 1000 times faster than retraining from scratch, reducing backdoor attack success rates to 0.01% on average while preserving 98.3% of the pre-unlearned model's main task accuracy.
Recent advances in Code Large Language Models (CodeLLMs) have primarily focused on open-ended code generation, often overlooking the crucial aspect of code understanding and reasoning. To bridge this gap, we introduce CodeMMLU, a comprehensive multiple-choice benchmark designed to evaluate the depth of software and code comprehension in LLMs. CodeMMLU includes nearly 20,000 questions spanning diverse domains, including code analysis, defect detection, and software engineering principles across multiple programming languages. Unlike traditional benchmarks that emphasize code generation, CodeMMLU assesses a model's ability to reason about programs across a wide-range of tasks such as code repair, execution reasoning, and fill-in-the-blank challenges. Our extensive evaluation reveals that even state-of-the-art models struggle with CodeMMLU, highlighting significant gaps in comprehension beyond generation. By emphasizing the essential connection between code understanding and effective AI-assisted development, CodeMMLU provides a critical resource for advancing more reliable and capable coding assistants.
25
In this work, we propose a novel learning-based method to jointly estimate the shape and subsurface scattering (SSS) parameters of translucent objects by utilizing polarization cues. Although polarization cues have been used in various applications, such as shape from polarization (SfP), BRDF estimation, and reflection removal, their application in SSS estimation has not yet been explored. Our observations indicate that the SSS affects not only the light intensity but also the polarization signal. Hence, the polarization signal can provide additional cues for SSS estimation. We also introduce the first large-scale synthetic dataset of polarized translucent objects for training our model. Our method outperforms several baselines from the SfP and inverse rendering realms on both synthetic and real data, as demonstrated by qualitative and quantitative results.
There are no more papers matching your filters at the moment.