SberSber AI
· +2
Researchers identified interpretable internal features in Large Language Models responsible for reasoning processes using Sparse Autoencoders and a novel metric called ReasonScore. This work established a causal link between these features and the models' observable reasoning behavior, leading to performance improvements on benchmarks and insights into how reasoning capabilities emerge during fine-tuning.
35
Researchers from Sber AI Lab introduced the Multimodal Banking Dataset (MBD), the first industrial-scale, publicly available multimodal dataset of real banking event sequences, designed to advance deep learning for financial applications. Benchmarking revealed that integrating transaction data with geo-position and technical support dialogue information consistently improved predictive performance on tasks like future product purchase prediction by 1-3.4% ROC-AUC over unimodal baselines.
7
Researchers at Sber AI developed ∇NABLA, an adaptive sparse attention mechanism for video Diffusion Transformers, which achieves up to 2.67x faster inference and 1.46x faster training while maintaining video generation quality comparable to full attention models. This approach combines a static local attention pattern with a dynamic, content-aware selection of important blocks, enabling efficient processing of high-resolution and long-duration video.
21
While current time series research focuses on developing new models, crucial questions of selecting an optimal approach for training such models are underexplored. Tsururu, a Python library introduced in this paper, bridges SoTA research and industry by enabling flexible combinations of global and multivariate approaches and multi-step-ahead forecasting strategies. It also enables seamless integration with various forecasting models. Available at this https URL .
130
We present Kandinsky 3.0, a large-scale text-to-image generation model based on latent diffusion, continuing the series of text-to-image Kandinsky models and reflecting our progress to achieve higher quality and realism of image generation. In this report we describe the architecture of the model, the data collection procedure, the training technique, and the production system for user interaction. We focus on the key components that, as we have identified as a result of a large number of experiments, had the most significant impact on improving the quality of our model compared to the others. We also describe extensions and applications of our model, including super resolution, inpainting, image editing, image-to-video generation, and a distilled version of Kandinsky 3.0 - Kandinsky 3.1, which does inference in 4 steps of the reverse process and 20 times faster without visual quality decrease. By side-by-side human preferences comparison, Kandinsky becomes better in text understanding and works better on specific domains. The code is available at this https URL
ImageReFL addresses the quality-diversity trade-off in human-aligned text-to-image diffusion models by combining an innovative "combined generation" sampling strategy with a specialized fine-tuning algorithm. This approach enables the generation of images that exhibit both high human preference alignment and rich sample diversity, notably achieving comparable or superior quality with fewer fine-tuned steps than prior methods.
2
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
Sequential recommendations (SR) with transformer-based architectures are widely adopted in real-world applications, where SR models require frequent retraining to adapt to ever-changing user preferences. However, training transformer-based SR models often encounters a high computational cost associated with scoring extensive item catalogs, often exceeding thousands of items. This occurs mainly due to the use of cross-entropy loss, where peak memory scales proportionally to catalog size, batch size, and sequence length. Recognizing this, practitioners in the field of recommendation systems typically address memory consumption by integrating the cross-entropy (CE) loss with negative sampling, thereby reducing the explicit memory demands of the final layer. However, a small number of negative samples would degrade model performance, and as we demonstrate in our work, increasing the number of negative samples and the batch size further improves the model's performance, but rapidly starts to exceed industrial GPUs' size (~40Gb). In this work, we introduce the CCE- method, which offers a GPU-efficient implementation of the CE loss with negative sampling. Our method accelerates training by up to two times while reducing memory consumption by more than 10 times. Leveraging the memory savings afforded by using CCE- for model training, it becomes feasible to enhance its accuracy on datasets with a large item catalog compared to those trained with original PyTorch-implemented loss functions. Finally, we perform an analysis of key memory-related hyperparameters and highlight the necessity of a delicate balance among these factors. We demonstrate that scaling both the number of negative samples and batch size leads to better results rather than maximizing only one of them. To facilitate further adoption of CCE-, we release a Triton kernel that efficiently implements the proposed method.
Though Large Vision-Language Models (LVLMs) are being actively explored in medicine, their ability to conduct complex real-world telemedicine consultations combining accurate diagnosis with professional dialogue remains underexplored. This paper presents 3MDBench (Medical Multimodal Multi-agent Dialogue Benchmark), an open-source framework for simulating and evaluating LVLM-driven telemedical consultations. 3MDBench simulates patient variability through temperament-based Patient Agent and evaluates diagnostic accuracy and dialogue quality via Assessor Agent. It includes 2996 cases across 34 diagnoses from real-world telemedicine interactions, combining textual and image-based data. The experimental study compares diagnostic strategies for widely used open and closed-source LVLMs. We demonstrate that multimodal dialogue with internal reasoning improves F1 score by 6.5% over non-dialogue settings, highlighting the importance of context-aware, information-seeking questioning. Moreover, injecting predictions from a diagnostic convolutional neural network into the LVLM's context boosts F1 by up to 20%. Source code is available at this https URL.
1
The loss landscape of neural networks is a critical aspect of their training, and understanding its properties is essential for improving their performance. In this paper, we investigate how the loss surface changes when the sample size increases, a previously unexplored issue. We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample. Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks. Our findings provide insights into the local geometry of neural loss landscapes and have implications for the development of sample size determination techniques.
2
Researchers from leading Russian institutions and Sber AI evaluated four large language models for geopolitical biases by presenting conflicting national narratives on historical events. They found that all models exhibited consistent preferences for certain viewpoints, particularly Western ones, and that these biases were resistant to simple debiasing prompts but highly malleable to direct instructions.
This paper presents a new dataset of Peter the Great's manuscripts and describes a segmentation procedure that converts initial images of documents into the lines. The new dataset may be useful for researchers to train handwriting text recognition models as a benchmark for comparing different models. It consists of 9 694 images and text files corresponding to lines in historical documents. The open machine learning competition Digital Peter was held based on the considered dataset. The baseline solution for this competition as well as more advanced methods on handwritten text recognition are described in the article. Full dataset and all code are publicly available.
·
Researchers from AIRI, Skoltech, HSE University, and Sber AI introduce CLEAR, the first open-source benchmark for Multimodal Machine Unlearning (MMU), specifically designed to evaluate the targeted removal of character-level information across textual and visual modalities. Their comprehensive evaluation of 11 state-of-the-art unlearning methods on this benchmark demonstrates that existing techniques struggle to effectively forget specific data while retaining general model utility, with LLMU and DPO showing the most balanced performance.
Denoising Diffusion Probabilistic Models (DDPMs) provide the foundation for the recent breakthroughs in generative modeling. Their Markovian structure makes it difficult to define DDPMs with distributions other than Gaussian or discrete. In this paper, we introduce Star-Shaped DDPM (SS-DDPM). Its star-shaped diffusion process allows us to bypass the need to define the transition probabilities or compute posteriors. We establish duality between star-shaped and specific Markovian diffusions for the exponential family of distributions and derive efficient algorithms for training and sampling from SS-DDPMs. In the case of Gaussian distributions, SS-DDPM is equivalent to DDPM. However, SS-DDPMs provide a simple recipe for designing diffusion models with distributions such as Beta, von Mises\unicodex2013\unicode{x2013}Fisher, Dirichlet, Wishart and others, which can be especially useful when data lies on a constrained manifold. We evaluate the model in different settings and find it competitive even on image data, where Beta SS-DDPM achieves results comparable to a Gaussian DDPM. Our implementation is available at this https URL .
21
We present a new data set for speech emotion recognition (SER) tasks called Dusha. The corpus contains approximately 350 hours of data, more than 300 000 audio recordings with Russian speech and their transcripts. Therefore it is the biggest open bi-modal data collection for SER task nowadays. It is annotated using a crowd-sourcing platform and includes two subsets: acted and real-life. Acted subset has a more balanced class distribution than the unbalanced real-life part consisting of audio podcasts. So the first one is suitable for model pre-training, and the second is elaborated for fine-tuning purposes, model approbation, and validation. This paper describes pre-processing routine, annotation, and experiment with a baseline model to demonstrate some actual metrics which could be obtained with the Dusha data set.
Personalized diffusion models have shown remarkable success in Text-to-Image (T2I) generation by enabling the injection of user-defined concepts into diverse contexts. However, balancing concept fidelity with contextual alignment remains a challenging open problem. In this work, we propose an RL-based approach that leverages the diverse outputs of T2I models to address this issue. Our method eliminates the need for human-annotated scores by generating a synthetic paired dataset for DPO-like training using external quality metrics. These better-worse pairs are specifically constructed to improve both concept fidelity and prompt adherence. Moreover, our approach supports flexible adjustment of the trade-off between image fidelity and textual alignment. Through multi-step training, our approach outperforms a naive baseline in convergence speed and output quality. We conduct extensive qualitative and quantitative analysis, demonstrating the effectiveness of our method across various architectures and fine-tuning techniques. The source code can be found at this https URL
This study investigates confidence estimation using selective classifiers to enhance error detection in Text-to-SQL systems, particularly under distribution shifts. Researchers found that integrating Gaussian Mixture Models and applying Isotonic Regression for calibration improved the system's ability to identify and abstain from errors, especially unanswerable questions, though challenges persist with compositional generalization.
This paper presents a system developed for SemEval 2025 Task 8: Question Answering (QA) over tabular data. Our approach integrates several key components: text-to-SQL and text-to-code generation modules, a self-correction mechanism, and a retrieval-augmented generation (RAG). Additionally, it includes an end-to-end (E2E) module, all orchestrated by a large language model (LLM). Through ablation studies, we analyzed the effects of different parts of our pipeline and identified the challenges that are still present in this field. During the evaluation phase of the competition, our solution achieved an accuracy of 80%, resulting in a top-13 ranking among the 38 participating teams. Our pipeline demonstrates a significant improvement in accuracy for open-source models and achieves a performance comparable to proprietary LLMs in QA tasks over tables. The code is available at GitHub repository.
2
Temporal Graph Networks (TGNs), while being accurate, face significant training inefficiencies due to irregular supervision signals in dynamic graphs, which induce sparse gradient updates. We first theoretically establish that aggregating historical node interactions into pseudo-labels reduces gradient variance, accelerating convergence. Building on this analysis, we propose History-Averaged Labels (HAL), a method that dynamically enriches training batches with pseudo-targets derived from historical label distributions. HAL ensures continuous parameter updates without architectural modifications by converting idle computation into productive learning steps. Experiments on the Temporal Graph Benchmark (TGB) validate our findings and an assumption about slow change of user preferences: HAL accelerates TGNv2 training by up to 15x while maintaining competitive performance. Thus, this work offers an efficient, lightweight, architecture-agnostic, and theoretically motivated solution to label sparsity in temporal graph learning.
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation (M&S) of interactions between users and recommender systems and applications of the M&S to the performance improvement of industrial recommender engines. We start with the motivation behind the development of frameworks implementing the simulations -- simulators -- and the usage of them for training and testing recommender systems of different types (including Reinforcement Learning ones). Furthermore, we provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness and moreover make a summary of the simulators found in the research literature. Besides other things, we discuss the building blocks of simulators: methods for synthetic data (user, item, user-item responses) generation, methods for what-if experimental analysis, methods and datasets used for simulation quality evaluation (including the methods that monitor and/or close possible simulation-to-reality gaps), and methods for summarization of experimental simulation results. Finally, this survey considers emerging topics and open problems in the field.
There are no more papers matching your filters at the moment.