School of ComputingUniversity of Colombo
Researchers from Purdue, QCRI, and MBZUAI developed a multi-stage semantic ranking system to automate the annotation of cyber threat behaviors to MITRE ATT&CK techniques. The system, which utilizes fine-tuned transformer models and a newly released human-annotated dataset, achieved a recall@10 of 92.07% and recall@3 of 81.02%, outperforming prior methods and significantly exceeding the performance of general large language models.
Test-time prompt tuning for vision-language models (VLMs) is getting attention because of their ability to learn with unlabeled data without fine-tuning. Although test-time prompt tuning methods for VLMs can boost accuracy, the resulting models tend to demonstrate poor calibration, which casts doubts on the reliability and trustworthiness of these models. Notably, more attention needs to be devoted to calibrating the test-time prompt tuning in vision-language models. To this end, we propose a new approach, called O-TPT that introduces orthogonality constraints on the textual features corresponding to the learnable prompts for calibrating test-time prompt tuning in VLMs. Towards introducing orthogonality constraints, we make the following contributions. First, we uncover new insights behind the suboptimal calibration performance of existing methods relying on textual feature dispersion. Second, we show that imposing a simple orthogonalization of textual features is a more effective approach towards obtaining textual dispersion. We conduct extensive experiments on various datasets with different backbones and baselines. The results indicate that our method consistently outperforms the prior state of the art in significantly reducing the overall average calibration error. Also, our method surpasses the zero-shot calibration performance on fine-grained classification tasks.
University of Toronto logoUniversity of TorontoUniversity of New South WalesUniversity of Amsterdam logoUniversity of AmsterdamImperial College London logoImperial College LondonGhent UniversityUniversity College London logoUniversity College LondonUniversity of Oxford logoUniversity of OxfordNagoya University logoNagoya UniversityUniversity of Copenhagen logoUniversity of CopenhagenYale University logoYale UniversityUniversitat Pompeu FabraKU Leuven logoKU LeuvenUniversity of CampinasEmory University logoEmory UniversityHarvard Medical SchoolKing’s College London logoKing’s College LondonMohamed bin Zayed University of Artificial Intelligence logoMohamed bin Zayed University of Artificial IntelligenceAristotle University of ThessalonikiTechnical University of Munich logoTechnical University of MunichKorea Advanced Institute of Science and TechnologyUniversitat de BarcelonaGerman Cancer Research Center (DKFZ)Universidad Politécnica de MadridTechnical University of DenmarkMaastricht UniversityUniversity of LeedsINSERMUniversity of LondonThe University of Western AustraliaUmeå UniversityUniversity of California San FranciscoThe Barcelona Institute of Science and TechnologyUniversidad Nacional de ColombiaFraunhofer Heinrich-Hertz-InstituteHelmholtz Center MunichKempelen Institute of Intelligent TechnologiesUniversidad Nacional del LitoralStanford University School of MedicineUniversity of ColomboUniversity of Tunis El ManarUniversity of Colorado Anschutz Medical CampusMilitary Institute of Science and TechnologyUniversity of Texas MD Anderson Cancer CenterFoundation for Research and Technology-Hellas (FORTH)Hellenic Mediterranean UniversityNile UniversityIBM Research AfricaNepal Applied Mathematics and Informatics Institute for research (NAAMII)Jimma UniversityUniversity of GhanaMedical University of GdanskTechnology and Research (A*STAR)University of Arkansas for Medical SciencesBBMRI-ERICGalileo UniversityMilton Margai Technical UniversityMuhimbili University of Health and Allied SciencesEuropean Heart NetworkPasqual Maragall FoundationNamibia University of Science & TechnologyErasmus MC University Medical CenterAlmaty AI LabUniversity M’Hamed BougaraHospital Universitario y Politécnico La FeLa Fe Health Research InstituteHospital Clínic of BarcelonaUniversity of KassalaChildren’s National Hospital Washington DCUniversity of ZambiaEurécomIstanbul Technical University
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.
Emotion-Cause analysis has attracted the attention of researchers in recent years. However, most existing datasets are limited in size and number of emotion categories. They often focus on extracting parts of the document that contain the emotion cause and fail to provide more abstractive, generalizable root cause. To bridge this gap, we introduce a large-scale dataset of emotion causes, derived from 9.8 million cleaned tweets over 15 years. We describe our curation process, which includes a comprehensive pipeline for data gathering, cleaning, labeling, and validation, ensuring the dataset's reliability and richness. We extract emotion labels and provide abstractive summarization of the events causing emotions. The final dataset comprises over 700,000 tweets with corresponding emotion-cause pairs spanning 48 emotion classes, validated by human evaluators. The novelty of our dataset stems from its broad spectrum of emotion classes and the abstractive emotion cause that facilitates the development of an emotion-cause knowledge graph for nuanced reasoning. Our dataset will enable the design of emotion-aware systems that account for the diverse emotional responses of different people for the same event.
People often utilise online media (e.g., Facebook, Reddit) as a platform to express their psychological distress and seek support. State-of-the-art NLP techniques demonstrate strong potential to automatically detect mental health issues from text. Research suggests that mental health issues are reflected in emotions (e.g., sadness) indicated in a person's choice of language. Therefore, we developed a novel emotion-annotated mental health corpus (EmoMent), consisting of 2802 Facebook posts (14845 sentences) extracted from two South Asian countries - Sri Lanka and India. Three clinical psychology postgraduates were involved in annotating these posts into eight categories, including 'mental illness' (e.g., depression) and emotions (e.g., 'sadness', 'anger'). EmoMent corpus achieved 'very good' inter-annotator agreement of 98.3% (i.e. % with two or more agreement) and Fleiss' Kappa of 0.82. Our RoBERTa based models achieved an F1 score of 0.76 and a macro-averaged F1 score of 0.77 for the first task (i.e. predicting a mental health condition from a post) and the second task (i.e. extent of association of relevant posts with the categories defined in our taxonomy), respectively.
Aspect-Based Sentiment Analysis (ABSA) has been prominent and ongoing research over many different domains, but it is not widely discussed in the legal domain. A number of publicly available datasets for a wide range of domains usually fulfill the needs of researchers to perform their studies in the field of ABSA. To the best of our knowledge, there is no publicly available dataset for the Aspect (Party) Based Sentiment Analysis for legal opinion texts. Therefore, creating a publicly available dataset for the research of ABSA for the legal domain can be considered as a task with significant importance. In this study, we introduce a manually annotated legal opinion text dataset (SigmaLaw-ABSA) intended towards facilitating researchers for ABSA tasks in the legal domain. SigmaLaw-ABSA consists of legal opinion texts in the English language which have been annotated by human judges. This study discusses the sub-tasks of ABSA relevant to the legal domain and how to use the dataset to perform them. This paper also describes the statistics of the dataset and as a baseline, we present some results on the performance of some existing deep learning based systems on the SigmaLaw-ABSA dataset.
Objective: Young children and infants, especially newborns, are highly susceptible to seizures, which, if undetected and untreated, can lead to severe long-term neurological consequences. Early detection typically requires continuous electroencephalography (cEEG) monitoring in hospital settings, involving costly equipment and highly trained specialists. This study presents a low-cost, active dry-contact electrode-based, adjustable electroencephalography (EEG) headset, combined with an explainable deep learning model for seizure detection from reduced-montage EEG, and a multimodal artifact removal algorithm to enhance signal quality. Methods: EEG signals were acquired via active electrodes and processed through a custom-designed analog front end for filtering and digitization. The adjustable headset was fabricated using three-dimensional printing and laser cutting to accommodate varying head sizes. The deep learning model was trained to detect neonatal seizures in real time, and a dedicated multimodal algorithm was implemented for artifact removal while preserving seizure-relevant information. System performance was evaluated in a representative clinical setting on a pediatric patient with absence seizures, with simultaneous recordings obtained from the proposed device and a commercial wet-electrode cEEG system for comparison. Results: Signals from the proposed system exhibited a correlation coefficient exceeding 0.8 with those from the commercial device. Signal-to-noise ratio analysis indicated noise mitigation performance comparable to the commercial system. The deep learning model achieved accuracy and recall improvements of 2.76% and 16.33%, respectively, over state-of-the-art approaches. The artifact removal algorithm effectively identified and eliminated noise while preserving seizure-related EEG features.
Conventional linear crop layouts, optimised for tractors, hinder robotic navigation with tight turns, long travel distances, and perceptual aliasing. We propose a robot-centric square spiral layout with a central tramline, enabling simpler motion and more efficient coverage. To exploit this geometry, we develop a navigation stack combining DH-ResNet18 waypoint regression, pixel-to-odometry mapping, A* planning, and model predictive control (MPC). In simulations, the spiral layout yields up to 28% shorter paths and about 25% faster execution for waypoint-based tasks across 500 waypoints than linear layouts, while full-field coverage performance is comparable to an optimised linear U-turn strategy. Multi-robot studies demonstrate efficient coordination on the spirals rule-constrained graph, with a greedy allocator achieving 33-37% lower batch completion times than a Hungarian assignment under our setup. These results highlight the potential of redesigning field geometry to better suit autonomous agriculture.
Pre-trained transformer language models on large unlabeled corpus have produced state-of-the-art results in natural language processing, organic molecule design, and protein sequence generation. However, no such models have been applied to learn the composition patterns of inorganic materials. Here we train a series of seven modern transformer language models (GPT, GPT-2, GPT-Neo, GPT-J, BLMM, BART, and RoBERTa) using the expanded formulas from material deposited in the ICSD, OQMD, and Materials Projects databases. Six different datasets with/out non-charge-neutral or balanced electronegativity samples are used to benchmark the performances and uncover the generation biases of modern transformer models for the generative design of materials compositions. Our extensive experiments showed that the causal language models based materials transformers can generate chemically valid materials compositions with as high as 97.54\% to be charge neutral and 91.40\% to be electronegativity balanced, which has more than 6 times higher enrichment compared to a baseline pseudo-random sampling algorithm. These models also demonstrate high novelty and their potential in new materials discovery has been proved by their capability to recover the leave-out materials. We also find that the properties of the generated samples can be tailored by training the models with selected training sets such as high-bandgap materials. Our experiments also showed that different models each have their own preference in terms of the properties of the generated samples and their running time complexity varies a lot. We have applied our materials transformer models to discover a set of new materials as validated using DFT calculations.
Extra-label drug use in food animal medicine is authorized by the US Animal Medicinal Drug Use Clarification Act (AMDUCA), and estimated withdrawal intervals are based on published scientific pharmacokinetic data. Occasionally there is a paucity of scientific data on which to base a withdrawal interval or a large number of animals being treated, driving the need to test for drug residues. Rapid assay commercial farm-side tests are essential for monitoring drug residues in animal products to protect human health. Active ingredients, sensitivity, matrices, and species that have been evaluated for commercial rapid assay tests are typically reported on manufacturers' websites or in PDF documents that are available to consumers but may require a special access request. Additionally, this information is not always correlated with FDA-approved tolerances. Furthermore, parameter changes for these tests can be very challenging to regularly identify, especially those listed on websites or in documents that are not publicly available. Therefore, artificial intelligence plays a critical role in efficiently extracting the data and ensure current information. Extracting tables from PDF and HTML documents has been investigated both by academia and commercial tool builders. Research in text mining of such documents has become a widespread yet challenging arena in implementing natural language programming. However, techniques of extracting tables are still in their infancy and being investigated and improved by researchers. In this study, we developed and evaluated a data-mining method for automatically extracting rapid assay data from electronic documents. Our automatic electronic data extraction method includes a software package module, a developed pattern recognition tool, and a data mining engine. Assay details were provided by several commercial entities that produce these rapid drug residue assay
In order to advance the state of the art in graph learning algorithms, it is necessary to construct large real-world datasets. While there are many benchmark datasets for homogeneous graphs, only a few of them are available for heterogeneous graphs. Furthermore, the latter graphs are small in size rendering them insufficient to understand how graph learning algorithms perform in terms of classification metrics and computational resource utilization. We introduce, PDNS-Net, the largest public heterogeneous graph dataset containing 447K nodes and 897K edges for the malicious domain classification task. Compared to the popular heterogeneous datasets IMDB and DBLP, PDNS-Net is 38 and 17 times bigger respectively. We provide a detailed analysis of PDNS-Net including the data collection methodology, heterogeneous graph construction, descriptive statistics and preliminary graph classification performance. The dataset is publicly available at this https URL. Our preliminary evaluation of both popular homogeneous and heterogeneous graph neural networks on PDNS-Net reveals that further research is required to improve the performance of these models on large heterogeneous graphs.
The Internet of Things (IoT) is seen as a novel technical paradigm aimed at enabling connectivity between billions of interconnected devices all around the world. This IoT is being served in various domains, such as smart healthcare, traffic surveillance, smart homes, smart cities, and various industries. IoT's main functionality includes sensing the surrounding environment, collecting data from the surrounding, and transmitting those data to the remote data centers or the cloud. This sharing of vast volumes of data between billions of IoT devices generates a large energy demand and increases energy wastage in the form of heat. The Green IoT envisages reducing the energy consumption of IoT devices and keeping the environment safe and clean. Inspired by achieving a sustainable next-generation IoT ecosystem and guiding us toward making a healthy green planet, we first offer an overview of Green IoT (GIoT), and then the challenges and the future directions regarding the GIoT are presented in our study.
The neonatal period is the most vulnerable time for the development of seizures. Seizures in the immature brain lead to detrimental consequences, therefore require early diagnosis. The gold-standard for neonatal seizure detection currently relies on continuous video-EEG monitoring; which involves recording multi-channel electroencephalogram (EEG) alongside real-time video monitoring within a neonatal intensive care unit (NICU). However, video-EEG monitoring technology requires clinical expertise and is often limited to technologically advanced and resourceful settings. Cost-effective new techniques could help the medical fraternity make an accurate diagnosis and advocate treatment without delay. In this work, a novel explainable deep learning model to automate the neonatal seizure detection process with a reduced EEG montage is proposed, which employs convolutional nets, graph attention layers, and fully connected layers. Beyond its ability to detect seizures in real-time with a reduced montage, this model offers the unique advantage of real-time interpretability. By evaluating the performance on the Zenodo dataset with 10-fold cross-validation, the presented model achieves an absolute improvement of 8.31% and 42.86% in area under curve (AUC) and recall, respectively.
Cybercriminals exploit cryptocurrencies to carry out illicit activities. In this paper, we focus on Ponzi schemes that operate on Bitcoin and perform an in-depth analysis of MMM, one of the oldest and most popular Ponzi schemes. Based on 423K transactions involving 16K addresses, we show that: (1) Starting Sep 2014, the scheme goes through three phases over three years. At its peak, MMM circulated more than 150M dollars a day, after which it collapsed by the end of Jun 2016. (2) There is a high income inequality between MMM members, with the daily Gini index reaching more than 0.9. The scheme also exhibits a zero-sum investment model, in which one member's loss is another member's gain. The percentage of victims who never made any profit has grown from 0% to 41% in five months, during which the top-earning scammer has made 765K dollars in profit. (3) The scheme has a global reach with 80 different member countries but a highly-asymmetrical flow of money between them. While India and Indonesia have the largest pairwise flow in MMM, members in Indonesia have received 12x more money than they have sent to their counterparts in India.
Internet of Things (IoT) devices are rapidly becoming universal. The success of IoT cannot be ignored in the scenario today, along with its attacks and threats on IoT devices and facilities are also increasing day by day. Cyber attacks become a part of IoT and affecting the life and society of users, so steps must be taken to defend cyber seriously. Cybercrimes threaten the infrastructure of governments and businesses globally and can damage the users in innumerable ways. With the global cybercrime damages predicted to cost up to 6 trillion dollars annually on the global economy by cyber crime. Estimated of 328 Million Dollar annual losses with the cyber attacks in Australia itself. Various steps are taken to slow down these attacks but unfortunately not able to achieve success properly. Therefor secure IoT is the need of this time and understanding of attacks and threats in IoT structure should be studied. The reasons for cyber-attacks can be Countries having week cyber securities, Cybercriminals use new technologies to attack, Cybercrime is possible with services and other business schemes. MSP (Managed Service Providers) face different difficulties in fighting with Cyber-crime. They have to ensure that security of the customer as well as their security in terms of their servers, devices, and systems. Hence, they must use effective, fast, and easily usable antivirus and antimalware tools.
Pandemic is an outbreak that happens over a large geographic area affecting a greater portion of the population as new pathogens appear for which people have less immune and no vaccines are available. It can spread from person to person in a very short time, and in fact, the health workers are at greater risk of infection because of the patients who carry the disease. In the 21st century, where everyone is connected through digital technologies, Information and Communication Technology (ICT) plays a critical role in improving health care for individuals and larger communities. ICT has currently been severed in a variety of application domains which signifies its importance as a major technological paradigm, and it has drawn higher attention for its potential to alleviate the burden on healthcare systems caused by a rise in chronic diseases, aging and increased population and pandemic situations. This paper surveys and offers substantial knowledge about how effective ICT Healthcare strategy can be used to manage global pandemics by presenting a four-phased framework, which can be deployed to alleviate the strain on healthcare during a pandemic. In addition, we discuss how ICT powered technologies can be used towards managing a pandemic during the transformation of simple disease outbreak into a global pandemic.
The Smart grid (SG), generally known as the next-generation power grid emerged as a replacement for ill-suited power systems in the 21st century. It is in-tegrated with advanced communication and computing capabilities, thus it is ex-pected to enhance the reliability and the efficiency of energy distribution with minimum effects. With the massive infrastructure it holds and the underlying communication network in the system, it introduced a large volume of data that demands various techniques for proper analysis and decision making. Big data analytics, machine learning (ML), and deep learning (DL) plays a key role when it comes to the analysis of this massive amount of data and generation of valuable insights. This paper explores and surveys the Smart grid architectural elements, machine learning, and deep learning-based applications and approaches in the context of the Smart grid. In addition in terms of machine learning-based data an-alytics, this paper highlights the limitations of the current research and highlights future directions as well.
Cryptography is vital for data security, but cryptographic algorithms can still be vulnerable to side-channel attacks (SCAs), physical assaults exploiting power consumption and EM radiation. SCAs pose a significant threat to cryptographic integrity, compromising device keys. While literature on SCAs focuses on real-world devices, the rise of sophisticated devices necessitates fresh approaches. Electromagnetic side-channel analysis (EM-SCA) gathers information by monitoring EM radiation, capable of retrieving encryption keys and detecting malicious activity. This study evaluates EM-SCA's impact on encryption across scenarios and explores its role in digital forensics and law enforcement. Addressing encryption susceptibility to EM-SCA can empower forensic investigators in overcoming encryption challenges, maintaining their crucial role in law enforcement. Additionally, the paper defines EM-SCA's current state in attacking encryption, highlighting vulnerable and resistant encryption algorithms and devices, and promising EM-SCA approaches. This study offers a comprehensive analysis of EM-SCA in law enforcement and digital forensics, suggesting avenues for further research.
Crystal structure prediction (CSP) is now increasingly used in discovering novel materials with applications in diverse industries. However, despite decades of developments and significant progress in this area, there lacks a set of well-defined benchmark dataset, quantitative performance metrics, and studies that evaluate the status of the field. We aim to fill this gap by introducing a CSP benchmark suite with 180 test structures along with our recently implemented CSP performance metric set. We benchmark a collection of 13 state-of-the-art (SOTA) CSP algorithms including template-based CSP algorithms, conventional CSP algorithms based on DFT calculations and global search such as CALYPSO, CSP algorithms based on machine learning (ML) potentials and global search, and distance matrix based CSP algorithms. Our results demonstrate that the performance of the current CSP algorithms is far from being satisfactory. Most algorithms cannot even identify the structures with the correct space groups except for the template-based algorithms when applied to test structures with similar templates. We also find that the ML potential based CSP algorithms are now able to achieve competitive performances compared to the DFT-based algorithms. These CSP algorithms' performance is strongly determined by the quality of the neural potentials as well as the global optimization algorithms. Our benchmark suite comes with a comprehensive open-source codebase and 180 well-selected benchmark crystal structures, making it convenient to evaluate the advantages and disadvantages of CSP algorithms from future studies. All the code and benchmark data are available at this https URL
Individuals who are differently-able in vision cannot proceed with their day-to-day activities as smoothly as other people do. Especially independent walking is a hard target to achieve with their visual impairment. Assistive electronic travel aids equipped with different types of sensors are designed for visually impaired persons to assist their safe navigation. The amount of research on combining multiple sensors in assistive navigation aids for visually impaired navigation is limited. Most work is targeted at sensor integration but not at sensor fusion. This paper aims to address how sensor fusion and integration will be used to improve the sub-processes of visually impaired navigation and the way to evaluate the sensor fusion-based approach for visually impaired navigation which consists of several contributions to field sensor fusion in visually impaired navigation such as a novel homogeneous sensor fusion algorithm based on extended Kalman filter, a novel heterogeneous sensor integration approach, and a complementary sensor fusion algorithm based on error state extended Kaman filter. Overall this research presents a novel navigational framework to integrate obstacle detection, obstacle recognition, localization, motion planning, and current context awareness with sensor fusion.
There are no more papers matching your filters at the moment.