University of Nebraska-Lincoln
Conversational recommender systems (CRS) based on Large Language Models (LLMs) need to constantly be aligned to the user preferences to provide satisfying and context-relevant item recommendations. The traditional supervised fine-tuning cannot capture the implicit feedback signal, e.g., dwell time, sentiment polarity, or engagement patterns. In this paper, we share a fine-tuning solution using human feedback reinforcement learning (RLHF) to maximize implied user feedback (IUF) in a multi-turn recommendation context. We specify a reward model RϕR_{\phi} learnt on weakly-labelled engagement information and maximize user-centric utility by optimizing the foundational LLM M_{\theta} through a proximal policy optimization (PPO) approach. The architecture models conversational state transitions statst+1s_t \to a_t \to s_{t +1}, where the action ata_t is associated with LLM-generated item suggestions only on condition of conversation history in the past. The evaluation across synthetic and real-world datasets (this http URL, OpenDialKG) demonstrates that our RLHF-fine-tuned models can perform better in terms of top-kk recommendation accuracy, coherence, and user satisfaction compared to (arrow-zero-cmwrquca-teja-falset ensuite 2Round group-deca States penalty give up This paper shows that implicit signal alignment can be efficient in achieving scalable and user-adaptive design of CRS.
With the rapid adoption of large language models (LLMs) in recommendation systems, the computational and communication bottlenecks caused by their massive parameter sizes and large data volumes have become increasingly prominent. This paper systematically investigates two classes of optimization methods-model parallelism and data parallelism-for distributed training of LLMs in recommendation scenarios. For model parallelism, we implement both tensor parallelism and pipeline parallelism, and introduce an adaptive load-balancing mechanism to reduce cross-device communication overhead. For data parallelism, we compare synchronous and asynchronous modes, combining gradient compression and sparsification techniques with an efficient aggregation communication framework to significantly improve bandwidth utilization. Experiments conducted on a real-world recommendation dataset in a simulated service environment demonstrate that our proposed hybrid parallelism scheme increases training throughput by over 30% and improves resource utilization by approximately 20% compared to traditional single-mode parallelism, while maintaining strong scalability and robustness. Finally, we discuss trade-offs among different parallel strategies in online deployment and outline future directions involving heterogeneous hardware integration and automated scheduling technologies.
Moral judgment is integral to large language models' (LLMs) social reasoning. As multi-agent systems gain prominence, it becomes crucial to understand how LLMs function when collaborating compared to operating as individual agents. In human moral judgment, group deliberation leads to a Utilitarian Boost: a tendency to endorse norm violations that inflict harm but maximize benefits for the greatest number of people. We study whether a similar dynamic emerges in multi-agent LLM systems. We test six models on well-established sets of moral dilemmas across two conditions: (1) Solo, where models reason independently, and (2) Group, where they engage in multi-turn discussions in pairs or triads. In personal dilemmas, where agents decide whether to directly harm an individual for the benefit of others, all models rated moral violations as more acceptable when part of a group, demonstrating a Utilitarian Boost similar to that observed in humans. However, the mechanism for the Boost in LLMs differed: While humans in groups become more utilitarian due to heightened sensitivity to decision outcomes, LLM groups showed either reduced sensitivity to norms or enhanced impartiality. We report model differences in when and how strongly the Boost manifests. We also discuss prompt and agent compositions that enhance or mitigate the effect. We end with a discussion of the implications for AI alignment, multi-agent design, and artificial moral reasoning. Code available at: this https URL
2
Prediction of stock price movements presents a formidable challenge in financial analytics due to the inherent volatility, non-stationarity, and nonlinear characteristics of market data. This paper introduces SPH-Net (Stock Price Prediction Hybrid Neural Network), an innovative deep learning framework designed to enhance the accuracy of time series forecasting in financial markets. The proposed architecture employs a novel co-attention mechanism that initially processes temporal patterns through a Vision Transformer, followed by refined feature extraction via an attention mechanism, thereby capturing both global and local dependencies in market data. To rigorously evaluate the model's performance, we conduct comprehensive experiments on eight diverse stock datasets: AMD, Ebay, Facebook, FirstService Corp, Tesla, Google, Mondi ADR, and Matador Resources. Each dataset is standardized using six fundamental market indicators: Open, High, Low, Close, Adjusted Close, and Volume, representing a complete set of features for comprehensive market analysis. Experimental results demonstrate that SPH-Net consistently outperforms existing stock prediction models across all evaluation metrics. The model's superior performance stems from its ability to effectively capture complex temporal patterns while maintaining robustness against market noise. By significantly improving prediction accuracy in financial time series analysis, SPH-Net provides valuable decision-support capabilities for investors and financial analysts, potentially enabling more informed investment strategies and risk assessment in volatile market conditions.
Solving NP-hard combinatorial optimization problems (COPs) (e.g., traveling salesman problems (TSPs) and capacitated vehicle routing problems (CVRPs)) in practice traditionally involves handcrafting heuristics or specifying a search space for finding effective heuristics. The main challenges from these approaches, however, are the sheer amount of domain knowledge and implementation efforts required from human experts. Recently, significant progress has been made to address these challenges, particularly by using large language models (LLMs) to design heuristics within some predetermined generalized algorithmic framework (GAF, e.g., ant colony optimization and guided local search) for building key functions/components (e.g., a priori information on how promising it is to include each edge in a solution for TSP and CVRP). Although existing methods leveraging this idea have shown to yield impressive optimization performance, they are not fully end-to-end and still require considerable manual interventions. In this paper, we propose a novel end-to-end framework, named RedAHD, that enables these LLM-based heuristic design methods to operate without the need of GAFs. More specifically, RedAHD employs LLMs to automate the process of reduction, i.e., transforming the COP at hand into similar COPs that are better-understood, from which LLM-based heuristic design methods can design effective heuristics for directly solving the transformed COPs and, in turn, indirectly solving the original COP. Our experimental results, evaluated on six COPs, show that RedAHD is capable of designing heuristics with competitive or improved results over the state-of-the-art methods with minimal human involvement.
Neural source code summarization is the task of generating natural language descriptions of source code behavior using neural networks. A fundamental component of most neural models is an attention mechanism. The attention mechanism learns to connect features in source code to specific words to use when generating natural language descriptions. Humans also pay attention to some features in code more than others. This human attention reflects experience and high-level cognition well beyond the capability of any current neural model. In this paper, we use data from published eye-tracking experiments to create a model of this human attention. The model predicts which words in source code are the most important for code summarization. Next, we augment a baseline neural code summarization approach using our model of human attention. We observe an improvement in prediction performance of the augmented approach in line with other bio-inspired neural models.
This work establishes a novel link between the problem of PAC-learning high-dimensional graphical models and the task of (efficient) counting and sampling of graph structures, using an online learning framework. We observe that if we apply the exponentially weighted average (EWA) or randomized weighted majority (RWM) forecasters on a sequence of samples from a distribution P using the log loss function, the average regret incurred by the forecaster's predictions can be used to bound the expected KL divergence between P and the predictions. Known regret bounds for EWA and RWM then yield new sample complexity bounds for learning Bayes nets. Moreover, these algorithms can be made computationally efficient for several interesting classes of Bayes nets. Specifically, we give a new sample-optimal and polynomial time learning algorithm with respect to trees of unknown structure and the first polynomial sample and time algorithm for learning with respect to Bayes nets over a given chordal skeleton.
Forecasting product demand in retail supply chains presents a complex challenge due to noisy, heterogeneous features and rapidly shifting consumer behavior. While traditional gradient boosting decision trees (GBDT) offer strong predictive performance on structured data, they often lack adaptive mechanisms to identify and emphasize the most relevant features under changing conditions. In this work, we propose AttnBoost, an interpretable learning framework that integrates feature-level attention into the boosting process to enhance both predictive accuracy and explainability. Specifically, the model dynamically adjusts feature importance during each boosting round via a lightweight attention mechanism, allowing it to focus on high-impact variables such as promotions, pricing, and seasonal trends. We evaluate AttnBoost on a large-scale retail sales dataset and demonstrate that it outperforms standard machine learning and deep tabular models, while also providing actionable insights for supply chain managers. An ablation study confirms the utility of the attention module in mitigating overfitting and improving interpretability. Our results suggest that attention-guided boosting represents a promising direction for interpretable and scalable AI in real-world forecasting applications.
This paper reviews the growing field of Bayesian prediction. Bayes point and interval prediction are defined and exemplified and situated in statistical prediction more generally. Then, four general approaches to Bayes prediction are defined and we turn to predictor selection. This can be done predictively or non-predictively and predictors can be based on single models or multiple models. We call these latter cases unitary predictors and model average predictors, respectively. Then we turn to the most recent aspect of prediction to emerge, namely prediction in the context of large observational data sets and discuss three further classes of techniques. We conclude with a summary and statement of several current open problems.
Current biocomputing approaches predominantly rely on engineered circuits with fixed logic, offering limited stability and reliability under diverse environmental conditions. Here, we use the GRNN framework introduced in our previous work to transform bacterial gene expression dynamics into a biocomputing library of mathematical solvers. We introduce a sub-GRNN search algorithm that identifies functional subnetworks tailored to specific mathematical calculation and classification tasks by evaluating gene expression patterns across chemically encoded input conditions. Tasks include identifying Fibonacci numbers, prime numbers, multiplication, and Collatz step counts. The identified problem-specific sub-GRNNs are then assessed using gene-wise and collective perturbation, as well as Lyapunov-based stability analysis, to evaluate robustness and reliability. Our results demonstrate that native transcriptional machinery can be harnessed to perform diverse mathematical calculation and classification tasks, while maintaining computing stability and reliability.
Total variation distance (TV distance) is a fundamental notion of distance between probability distributions. In this work, we introduce and study the problem of computing the TV distance of two product distributions over the domain {0,1}n\{0,1\}^n. In particular, we establish the following results. 1. The problem of exactly computing the TV distance of two product distributions is #P\#\mathsf{P}-complete. This is in stark contrast with other distance measures such as KL, Chi-square, and Hellinger which tensorize over the marginals leading to efficient algorithms. 2. There is a fully polynomial-time deterministic approximation scheme (FPTAS) for computing the TV distance of two product distributions PP and QQ where QQ is the uniform distribution. This result is extended to the case where QQ has a constant number of distinct marginals. In contrast, we show that when PP and QQ are Bayes net distributions, the relative approximation of their TV distance is NP\mathsf{NP}-hard.
The year 2023 marked a significant surge in the exploration of applying large language model (LLM) chatbots, notably ChatGPT, across various disciplines. We surveyed the applications of ChatGPT in bioinformatics and biomedical informatics throughout the year, covering omics, genetics, biomedical text mining, drug discovery, biomedical image understanding, bioinformatics programming, and bioinformatics education. Our survey delineates the current strengths and limitations of this chatbot in bioinformatics and offers insights into potential avenues for future developments.
Understanding signal behavior across scales is vital in areas such as natural phenomena analysis and financial modeling. A key property is self-similarity, quantified by the Hurst exponent (H), which reveals long-term dependencies. Wavelet-based methods are effective for estimating H due to their multi-scale analysis capability, but additive noise in real-world measurements often degrades accuracy. We propose Noise-Controlled ALPHEE (NC-ALPHEE), an enhancement of the Average Level-Pairwise Hurst Exponent Estimator (ALPHEE), incorporating noise mitigation and generating multiple level-pairwise estimates from signal energy pairs. A neural network (NN) combines these estimates, replacing traditional averaging. This adaptive learning maintains ALPHEE's behavior in noise-free cases while improving performance in noisy conditions. Extensive simulations show that in noise-free data, NC-ALPHEE matches ALPHEE's accuracy using both averaging and NN-based methods. Under noise, however, traditional averaging deteriorates and requires impractical level restrictions, while NC-ALPHEE consistently outperforms existing techniques without such constraints. NC-ALPHEE offers a robust, adaptive approach for H estimation, significantly enhancing the reliability of wavelet-based methods in noisy environments.
Graphs that are squares under the gluing algebra arise in the study of homomorphism density inequalities such as Sidorenko's conjecture. Recent work has focused on these homomorphism density applications. This paper takes a new perspective and focuses on the graph properties of arbitrary square graphs, not only those relevant to homomorphism conjectures and theorems. We develop a set of necessary and/or sufficient conditions for a graph to be square. We apply these conditions to categorize several classical families of graphs as square or not. In addition, we create infinite families of square graphs by proving that joins and Cartesian, direct, strong, and lexicographic products of square graphs with arbitrary graphs are square.
This paper presents a novel approach named \textbf{C}ontextually \textbf{R}elevant \textbf{I}mputation leveraging pre-trained \textbf{L}anguage \textbf{M}odels (\textbf{CRILM}) for handling missing data in tabular datasets. Instead of relying on traditional numerical estimations, CRILM uses pre-trained language models (LMs) to create contextually relevant descriptors for missing values. This method aligns datasets with LMs' strengths, allowing large LMs to generate these descriptors and small LMs to be fine-tuned on the enriched datasets for enhanced downstream task performance. Our evaluations demonstrate CRILM's superior performance and robustness across MCAR, MAR, and challenging MNAR scenarios, with up to a 10\% improvement over the best-performing baselines. By mitigating biases, particularly in MNAR settings, CRILM improves downstream task performance and offers a cost-effective solution for resource-constrained environments.
We analyzed the 7.92×1011\times 10^{11} cosmic-ray-induced muon events collected by the IceCube Neutrino Observatory from May 13, 2011, when the fully constructed experiment started to take data, to May 12, 2023. This dataset provides an up-to-date cosmic-ray arrival direction distribution in the Southern Hemisphere with unprecedented statistical accuracy covering more than a full period length of a solar cycle. Improvements in Monte Carlo event simulation and better handling of year-to-year differences in data processing significantly reduce systematic uncertainties below the level of statistical fluctuations compared to the previously published results. We confirm the observation of a change in the angular structure of the cosmic-ray anisotropy between 10 TeV and 1 PeV, more specifically in the 100-300 TeV energy range.
We report measurements of the current-induced spin torque produced by the delafossite antiferromagnet PdCrO2 and acting on an adjacent ferromagnetic permalloy layer. The spin torque increases strongly as the temperature is reduced through the Neel temperature, when the PdCrO2 transitions from a paramagnetic phase to a noncollinear antiferromagnetic state. This result is qualitatively consistent with density functional theory calculations regarding how spin-current generation changes upon antiferromagnetic ordering in PdCrO2.
This study applies Bayesian models to predict hotel booking cancellations, a key challenge affecting resource allocation, revenue, and customer satisfaction in the hospitality industry. Using a Kaggle dataset with 36,285 observations and 17 features, Bayesian Logistic Regression and Beta-Binomial models were implemented. The logistic model, applied to 12 features and 5,000 randomly selected observations, outperformed the Beta-Binomial model in predictive accuracy. Key predictors included the number of adults, children, stay duration, lead time, car parking space, room type, and special requests. Model evaluation using Leave-One-Out Cross-Validation (LOO-CV) confirmed strong alignment between observed and predicted outcomes, demonstrating the model's robustness. Special requests and parking availability were found to be the strongest predictors of cancellation. This Bayesian approach provides a valuable tool for improving booking management and operational efficiency in the hotel industry.
Proactive safety systems aim to mitigate risks by anticipating potential conflicts between vehicles and enabling early intervention to prevent work zone-related crashes. This study presents an infrastructure-enabled proactive work zone safety warning system that leverages a Digital Twin environment, integrating real-time multi-sensor data, detailed High-Definition (HD) maps, and a historical prediction attention mechanism-based trajectory prediction model. Using a co-simulation environment that combines Simulation of Urban MObility (SUMO) and CAR Learning to Act (CARLA) simulators, along with Lanelet2 HD maps and the Historical Prediction Network (HPNet) model, we demonstrate effective trajectory prediction and early warning generation for vehicle interactions in freeway work zones. To evaluate the accuracy of predicted trajectories, we use two standard metrics: Joint Average Displacement Error (ADE) and Joint Final Displacement Error (FDE). Specifically, the infrastructure-enabled HPNet model demonstrates superior performance on the work-zone datasets generated from the co-simulation environment, achieving a minimum Joint FDE of 0.3228 meters and a minimum Joint ADE of 0.1327 meters, lower than the benchmarks on the Argoverse (minJointFDE: 1.0986 m, minJointADE: 0.7612 m) and Interaction (minJointFDE: 0.8231 m, minJointADE: 0.2548 m) datasets. In addition, our proactive safety warning generation application, utilizing vehicle bounding boxes and probabilistic conflict modeling, demonstrates its capability to issue alerts for potential vehicle conflicts.
An obstacle toward construction robotization is the lack of methods to plan robot operations within the entire construction planning process. Despite the strength in modeling construction site conditions, 4D BIM technologies cannot perform construction robot task planning considering the contexts of given work environments. To address this limitation, this study presents a framework that integrates 4D BIM and robot task planning, presents an information flow for the integration, and performs high-level robot task planning and detailed simulation. The framework uniquely incorporates a construction robot knowledge base that derives robot-related modeling requirements to augment a 4D BIM model. Then, the 4D BIM model is converted into a robot simulation world where a robot performs a sequence of actions retrieving construction-related information. A case study focusing on the interior wall frame installation demonstrates the potential of systematic integration in achieving context-aware robot task planning and simulation in construction environments.
There are no more papers matching your filters at the moment.